Summary

Row

confirmed

467,593

confirmed

93

death

21,180 (4.5%)

death

2 (2.2%)

Row

Daily cumulative cases by type (Azerbaijan)

Comparison

Column

Daily new cases

Cases distribution by type

About

** Coronavirus tablosu: Azərbaycan üçün**

Evdə qalaraq bu xəstəliyin yayılmasını azalda bilərik.İndiki halda dünyamızı evdə qalaraq xilas edək. Müəllif Xasay Mirzəli- DataStat təlim-tədris mərkəzinin rəhbəri və data analitik

---
title: "Coronavirus in Azerbaijan"
author: "Khasay Mirzali"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    # social: ["facebook", "twitter", "linkedin"]
    source_code: embed
    vertical_layout: fill
---

```{r setup, include=FALSE}
#------------------ Packages ------------------
library(flexdashboard)
# install.packages("devtools")
# devtools::install_github("RamiKrispin/coronavirus", force = TRUE)
library(coronavirus)
data(coronavirus)
update_datasets()
# View(coronavirus)
# max(coronavirus$date)

`%>%` <- magrittr::`%>%`
#------------------ Parameters ------------------
# Set colors
# https://www.w3.org/TR/css-color-3/#svg-color
confirmed_color <- "purple"
active_color <- "#1f77b4"
recovered_color <- "forestgreen"
death_color <- "red"
#------------------ Data ------------------
dfa <- coronavirus %>%
  # dplyr::filter(date == max(date)) %>%
  dplyr::group_by(Country.Region, type) %>%
  dplyr::summarise(total = sum(cases)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) 
df <- coronavirus %>%
  # dplyr::filter(date == max(date)) %>%
  dplyr::filter(Country.Region == "Azerbaijan") %>%
  dplyr::group_by(Country.Region, type) %>%
  dplyr::summarise(total = sum(cases)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  # dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
  dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
  dplyr::arrange(-confirmed) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
  dplyr::mutate(country = trimws(country)) %>%
  dplyr::mutate(country = factor(country, levels = country))

df_daily <- coronavirus %>%
  dplyr::filter(Country.Region == "Azerbaijan") %>%
  dplyr::group_by(date, type) %>%
  dplyr::summarise(total = sum(cases, na.rm = TRUE)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  dplyr::arrange(date) %>%
  dplyr::ungroup() %>%
  #dplyr::mutate(active = confirmed - death - recovered) %>%
  dplyr::mutate(active = confirmed - death) %>%
  dplyr::mutate(
    confirmed_cum = cumsum(confirmed),
    death_cum = cumsum(death),
    # recovered_cum = cumsum(recovered),
    active_cum = cumsum(active)
  )


df1 <- coronavirus %>% dplyr::filter(date == max(date))
```

Summary
=======================================================================


Row {data-width=400}
-----------------------------------------------------------------------
### confirmed {.value-box}

```{r}

valueBox(value = paste(format(sum(dfa$confirmed), big.mark = ","), "", sep = " "), 
         caption = "Toplam say(Dünya)", 
         icon = "fas fa-user-md", 
         color = confirmed_color)
```

### confirmed {.value-box}

```{r}

valueBox(
  value = paste(format(sum(df$confirmed), big.mark = ","), "", sep = " "),
  caption = "Virusa tutulmuş şəxslərin sayı",
  icon = "fas fa-user-md",
  color = confirmed_color
)
```

### death {.value-box}

```{r}

valueBox(value = paste(format(sum(dfa$death, na.rm = TRUE), big.mark = ","), " (",
                       round(100 * sum(dfa$death, na.rm = TRUE) / sum(dfa$confirmed), 1), 
                       "%)", sep = ""),
         caption = "Ölüm halları(Dünya)", 
         icon = "fas fa-heart-broken", 
         color = death_color)
```
















### death {.value-box}

```{r}

valueBox(
  value = paste(format(sum(df$death, na.rm = TRUE), big.mark = ","), " (",
    round(100 * sum(df$death, na.rm = TRUE) / sum(df$confirmed), 1),
    "%)",
    sep = ""
  ),
  caption = "Ölüm halları (ölüm nisbəti)",
  icon = "fas fa-heart-broken",
  color = death_color
)
```


Row
-----------------------------------------------------------------------

### **Daily cumulative cases by type** (Azerbaijan)
    
```{r}
plotly::plot_ly(data = df_daily) %>%
  plotly::add_trace(
    x = ~date,
    # y = ~active_cum,
    y = ~confirmed_cum,
    type = "scatter",
    mode = "lines+markers",
    # name = "Active",
    name = "Confirmed",
    line = list(color = active_color),
    marker = list(color = active_color)
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~death_cum,
    type = "scatter",
    mode = "lines+markers",
    name = "Ölüm sayı",
    line = list(color = death_color),
    marker = list(color = death_color)
  ) %>%
  plotly::add_annotations(
    x = as.Date("2020-03-01"),
    y = 1,
    text = paste("Birinci hal"),
    xref = "x",
    yref = "y",
    arrowhead = 5,
    arrowhead = 3,
    arrowsize = 1,
    showarrow = TRUE,
    ax = -10,
    ay = -90
  )  %>%
   
  plotly::layout(
    title = "",
    yaxis = list(title = "Cumulative number of cases"),
    xaxis = list(title = "Date"),
    legend = list(x = 0.1, y = 0.9),
    hovermode = "compare"
  )
```


Comparison
=======================================================================


Column {data-width=400}
-------------------------------------


### **Daily new cases**
    
```{r}
daily_confirmed <- coronavirus %>%
  dplyr::filter(type == "confirmed") %>%
  dplyr::filter(date >= "2020-02-29") %>%
  dplyr::mutate(country = Country.Region) %>%
  dplyr::group_by(date, country) %>%
  dplyr::summarise(total = sum(cases)) %>%
  dplyr::ungroup() %>%
  tidyr::pivot_wider(names_from = country, values_from = total)

#----------------------------------------
# Plotting the data

daily_confirmed %>%
  plotly::plot_ly() %>%
  plotly::add_trace(
    x = ~date,
    y = ~Azerbaijan,
    type = "scatter",
    mode = "lines+markers",
    name = "Azerbaijan"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~Georgia,
    type = "scatter",
    mode = "lines+markers",
    name = "Georgia"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~Turkey,
    type = "scatter",
    mode = "lines+markers",
    name = "Turkey"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~Russia,
    type = "scatter",
    mode = "lines+markers",
    name = "Russia"
  ) %>%
  plotly::layout(
    title = "",
    legend = list(x = 0.1, y = 0.9),
    yaxis = list(title = "Number of new cases"),
    xaxis = list(title = "Date"),
    # paper_bgcolor = "black",
    # plot_bgcolor = "black",
    # font = list(color = 'white'),
    hovermode = "compare",
    margin = list(
      # l = 60,
      # r = 40,
      b = 10,
      t = 10,
      pad = 2
    )
  )
```
 
### **Cases distribution by type**

```{r daily_summary}
df_EU <- coronavirus %>%
  # dplyr::filter(date == max(date)) %>%
  dplyr::filter(Country.Region == "Azerbaijan" |
    Country.Region == "Georgia" |
    Country.Region == "Russia" |
    Country.Region == "Turkey") %>%
  dplyr::group_by(Country.Region, type) %>%
  dplyr::summarise(total = sum(cases)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  # dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
  dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
  dplyr::arrange(confirmed) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
  dplyr::mutate(country = trimws(country)) %>%
  dplyr::mutate(country = factor(country, levels = country))

plotly::plot_ly(
  data = df_EU,
  x = ~country,
  # y = ~unrecovered,
  y = ~ confirmed,
  # text =  ~ confirmed,
  # textposition = 'auto',
  type = "bar",
  name = "Virusa tutulmuş insan sayı",
  marker = list(color = active_color)
) %>%
  plotly::add_trace(
    y = ~death,
    # text =  ~ death,
    # textposition = 'auto',
    name = "Ölüm sayı",
    marker = list(color = death_color)
  ) %>%
  plotly::layout(
    barmode = "stack",
    yaxis = list(title = "Total cases"),
    xaxis = list(title = ""),
    hovermode = "compare",
    margin = list(
      # l = 60,
      # r = 40,
      b = 10,
      t = 10,
      pad = 2
    )
  )
```

About
=======================================================================

** Coronavirus tablosu: Azərbaycan üçün**

Evdə qalaraq bu xəstəliyin yayılmasını azalda bilərik.İndiki halda dünyamızı evdə qalaraq xilas edək.
**Müəllif**
Xasay Mirzəli- DataStat təlim-tədris mərkəzinin rəhbəri və data analitik