Income Inequality
To investigate income inequality over time, we consider the American Community Survey (ACS). The ACS provides data at the county level from 2005-2018. However, we will also consider national and state-level estimates. The main variable of interest is Total Household Income, although Age is used to filter out individuals under 15, and Group Quarters Status to filter out individuals living in group quarters. I also replace missing values and code negative incomes as 0.
# clean the acs data
acs_data <- acs_data %>%
mutate(hh_inc = na_if(HHINCOME, 9999999)*CPI99 %>%
replace(HHINCOME < 0, 0) %>% # # setting bottom code to 0 for now
replace(AGE < 15 | GQ == 2, NA)) # only consider population 15 yrs and older
print("ACS Data Summary - All Years (2005-2018), All Counties")
## [1] "ACS Data Summary - All Years (2005-2018), All Counties"
summary(acs_data)
## YEAR SAMPLE SERIAL CBSERIAL
## Min. :2000 Min. :200004 Min. : 1 Min. :1.000e+00
## 1st Qu.:2007 1st Qu.:200701 1st Qu.: 275696 1st Qu.:4.207e+05
## Median :2011 Median :201101 Median : 596335 Median :8.414e+05
## Mean :2011 Mean :201066 Mean : 633023 Mean :2.996e+11
## 3rd Qu.:2015 3rd Qu.:201501 3rd Qu.: 983824 3rd Qu.:1.262e+06
## Max. :2018 Max. :201801 Max. :1410976 Max. :2.018e+12
## NA's :5027734
## HHWT CLUSTER CPI99 STATEFIP
## Min. : 1.0 Min. :2.000e+12 Min. :0.663 Min. : 1.00
## 1st Qu.: 58.0 1st Qu.:2.007e+12 1st Qu.:0.703 1st Qu.:12.00
## Median : 83.0 Median :2.011e+12 Median :0.741 Median :27.00
## Mean : 114.5 Mean :2.011e+12 Mean :0.761 Mean :27.68
## 3rd Qu.: 133.0 3rd Qu.:2.015e+12 3rd Qu.:0.803 3rd Qu.:41.00
## Max. :4331.0 Max. :2.018e+12 Max. :0.967 Max. :56.00
##
## COUNTYFIP MET2013 MET2013ERR PUMA
## Min. : 0 Min. : 0 Min. :0 Min. : 100
## 1st Qu.: 0 1st Qu.: 0 1st Qu.:0 1st Qu.: 803
## Median : 13 Median :25540 Median :1 Median : 1906
## Mean : 47 Mean :22597 Mean :2 Mean : 3456
## 3rd Qu.: 67 3rd Qu.:36740 3rd Qu.:4 3rd Qu.: 3704
## Max. :810 Max. :49740 Max. :6 Max. :77777
## NA's :5027734 NA's :5027734 NA's :5027734 NA's :5027734
## STRATA CPUMA0010 GQ HHINCOME
## Min. : 1 Min. : 1 Min. :1.000 Min. : -39996
## 1st Qu.: 50056 1st Qu.: 251 1st Qu.:1.000 1st Qu.: 34500
## Median : 160045 Median : 531 Median :1.000 Median : 64500
## Mean : 309526 Mean : 541 Mean :1.085 Mean : 415963
## 3rd Qu.: 350042 3rd Qu.: 853 3rd Qu.:1.000 3rd Qu.: 110000
## Max. :7777722 Max. :1078 Max. :5.000 Max. :9999999
## NA's :5027734
## PERNUM PERWT AGE hh_inc
## Min. : 1.000 Min. : 1.0 Min. : 0.00 Min. : 0
## 1st Qu.: 1.000 1st Qu.: 59.0 1st Qu.:19.00 1st Qu.: 25410
## Median : 2.000 Median : 86.0 Median :40.00 Median : 47165
## Mean : 2.104 Mean : 119.8 Mean :39.96 Mean : 62421
## 3rd Qu.: 3.000 3rd Qu.: 140.0 3rd Qu.:58.00 3rd Qu.: 78353
## Max. :20.000 Max. :5419.0 Max. :97.00 Max. :2640257
## NA's :10424104
First, we look at the number of local areas with full information available for each state.
# state level
df.state <- acs_data %>%
filter(PERNUM == 1 &
STATEFIP <= 56) %>% # restrict to 50 states + DC
group_by(YEAR, STATEFIP) %>%
summarise(mean = weighted.mean(hh_inc, na.rm = T, w = HHWT),
median = weighted.median(hh_inc, na.rm = T, w = HHWT),
gini = weighted.gini(hh_inc[!is.na(hh_inc)],
HHWT[!is.na(hh_inc)])$Gini,
n_hh = sum(PERNUM*HHWT)/1000000) %>%
group_by(STATEFIP) %>%
mutate(avg_n_hh = mean(n_hh)) %>% # average n_hh over time
ungroup() %>%
mutate(rank_n_hh = dense_rank(desc(avg_n_hh))) # rank states by size
# county level
df.county <- acs_data %>%
filter(PERNUM == 1 & !is.na(hh_inc) &
!is.na(COUNTYFIP) & COUNTYFIP != 0) %>%
mutate(State = paste0(as_factor(STATEFIP), " (", STATEFIP, ")"),
STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)),
COUNTYFIP = paste0(
strrep("0",(3 - nchar(as.character(COUNTYFIP)))),
as.character(COUNTYFIP)),
FIP = paste(STATEFIP, COUNTYFIP)) %>%
group_by(YEAR, FIP) %>%
summarise(State = first(State),
mean = weighted.mean(hh_inc, na.rm = T, w = HHWT),
median = weighted.median(hh_inc, na.rm = T, w = HHWT),
gini = weighted.gini(hh_inc[!is.na(hh_inc)],
HHWT[!is.na(hh_inc)])$Gini,
n_hh = sum(PERNUM*HHWT)/1000000) %>%
group_by(FIP)
For now, we consider Public Use Microdata Areas (PUMAs), or areas of at least 100,000 people. From 2005-2018, there are 1,078 PUMAs with no missing 1-year data in IPUMS. In the five most populous states (CA, FL, NY, PA, TX) there are 397 PUMAs. We will use this set of 397 PUMAs as the baseline in subsequent analyses.
# add number of years variable
df.county <- df.county %>%
group_by(FIP) %>%
mutate(n_years = n()) %>%
ungroup()
# look at counties with all data for each year
df.county.long <- df.county %>%
mutate(all_years = c(n_years == 14)*1) %>%
filter(all_years == 1) %>%
group_by(State) %>%
summarise(`n (county variable estimates)` = n()/14)
# use test data, and compute the whole thing on Sherlock
acs_puma <- acs_data %>%
filter(PERNUM == 1 & YEAR > 2004) %>%
mutate(State = paste0(as_factor(STATEFIP), " (", STATEFIP, ")"),
PUMA2k = paste0(
strrep("0",(5 - nchar(as.character(PUMA)))),
as.character(PUMA)),
STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)),
PUMA_ID = paste0(STATEFIP, PUMA2k)) %>%
dplyr::select(-c(COUNTYFIP))
### reconstruct weights for county level estimates
acs_data_county_pre2012 <- acs_puma %>%
filter(YEAR < 2012) %>% # pre 2012 PUMA boundaries
left_join(dplyr::select(county_to_puma_pre2012,
COUNTYFIP, n_pumas, PUMA_ID, STATEFIP, FIP,
contains_puma, wgt_puma, afact))
acs_data_county_post2012 <- acs_puma %>% # post 2012 PUMA boundaries
filter(YEAR > 2011) %>%
left_join(dplyr::select(county_to_puma_post2012,
COUNTYFIP, n_pumas, PUMA_ID, STATEFIP, FIP,
contains_puma, wgt_puma, afact))
acs_data_county <- bind_rows(acs_data_county_pre2012, acs_data_county_post2012) %>%
mutate(HHWT_new = HHWT/n_pumas) %>%
filter(!is.na(n_pumas)) %>%
group_by(FIP) %>%
mutate(n_years = length(unique(YEAR))) %>%
filter(n_years == 14)
df.puma.county <- acs_data_county %>%
dplyr::select(YEAR, FIP, State) %>%
distinct() %>%
group_by(FIP) %>%
mutate(n_years = length(unique(YEAR)),
all_years = c(n_years == 14)*1) %>%
filter(all_years == 1 & !duplicated(FIP)) %>%
group_by(State) %>%
summarise(`n (PUMA estimates)` = n())
df.puma <- acs_puma %>%
dplyr::select(YEAR, PUMA_ID, State) %>%
distinct() %>%
group_by(PUMA_ID) %>%
mutate(n_years = length(unique(YEAR)),
all_years = c(n_years == 14)*1) %>%
filter(all_years == 1) %>%
group_by(State) %>%
summarise(`n PUMAs` = n()/14)
df.puma <- read.csv("df.puma.csv") %>%
dplyr::select(-X)
kable(df.puma, caption = paste("Number of counties with complete data in each state (2005-2018)")) %>%
kable_styling() %>%
scroll_box(width = "800px", height = "500px")
Number of counties with complete data in each state (2005-2018)
|
State
|
n.PUMAs
|
|
Alabama (1)
|
18
|
|
Alaska (2)
|
4
|
|
Arizona (4)
|
11
|
|
Arkansas (5)
|
15
|
|
California (6)
|
110
|
|
Colorado (8)
|
15
|
|
Connecticut (9)
|
22
|
|
Delaware (10)
|
4
|
|
District of Columbia (11)
|
3
|
|
Florida (12)
|
59
|
|
Georgia (13)
|
20
|
|
Hawaii (15)
|
8
|
|
Idaho (16)
|
1
|
|
Illinois (17)
|
47
|
|
Indiana (18)
|
24
|
|
Iowa (19)
|
7
|
|
Kansas (20)
|
9
|
|
Kentucky (21)
|
23
|
|
Louisiana (22)
|
15
|
|
Maine (23)
|
5
|
|
Maryland (24)
|
36
|
|
Massachusetts (25)
|
15
|
|
Michigan (26)
|
44
|
|
Minnesota (27)
|
27
|
|
Mississippi (28)
|
7
|
|
Missouri (29)
|
16
|
|
Montana (30)
|
1
|
|
Nebraska (31)
|
11
|
|
Nevada (32)
|
7
|
|
New Hampshire (33)
|
4
|
|
New Jersey (34)
|
38
|
|
New Mexico (35)
|
6
|
|
New York (36)
|
123
|
|
North Carolina (37)
|
27
|
|
North Dakota (38)
|
2
|
|
Ohio (39)
|
44
|
|
Oklahoma (40)
|
8
|
|
Oregon (41)
|
17
|
|
Pennsylvania (42)
|
55
|
|
Rhode Island (44)
|
6
|
|
South Carolina (45)
|
10
|
|
South Dakota (46)
|
1
|
|
Tennessee (47)
|
28
|
|
Texas (48)
|
49
|
|
Utah (49)
|
8
|
|
Vermont (50)
|
4
|
|
Virginia (51)
|
15
|
|
Washington (53)
|
22
|
|
West Virginia (54)
|
4
|
|
Wisconsin (55)
|
21
|
|
Wyoming (56)
|
2
|
|
Total
|
1078
|
To examine variation across states and counties, it is necessary to consider the complex survey design of the ACS. Looking at states and PUMAs, we must consider survey strata and household weights.
The following displays PUMA-level Gini estimates and standard errors.
#############################################
### State and county variance estimates #####
#############################################
county_state_gini <- data.frame(matrix(nrow = 0, ncol = 9))
names(county_state_gini) <- c("hh_inc", "se", "gini.moe", "STATEFIP",
"YEAR", "LEVEL",
"COUNTYFIP", "FIP", "se_squared")
########### STATE LEVEL ##################
for(i in c("06", "12", "36", "42", "48")){
### estimate gini coefficients and variance using complex survey design
des_acs <- svydesign(ids = ~CLUSTER, weights = ~HHWT , strata = ~STRATA,
data = acs_data %>%
filter(!is.na(hh_inc) & STATEFIP == i ) %>%
dplyr::select(CLUSTER, HHWT, STRATA, YEAR, STATEFIP, PUMA, hh_inc,
State))
des_acs <- convey_prep(des_acs)
svygini( ~hh_inc , design = des_acs )
puma_gini <- svyby(~hh_inc, by = ~interaction(YEAR, STATEFIP, PUMA), design = des_acs, FUN = svygini, deff = FALSE)
state_gini <- svyby(~hh_inc, by = ~interaction(YEAR, STATEFIP), design = des_acs, FUN = svygini, deff = FALSE)
state_gini <- state_gini %>%
mutate(gini.moe = paste0(round(hh_inc, 4), " (", round(se, 4), ")"),
STATEFIP = substr(`interaction(YEAR, STATEFIP)`, 6, 7),
YEAR = substr(`interaction(YEAR, STATEFIP)`, 0, 4),
LEVEL = "State")
########### COUNTY LEVEL ###################
# if a county = puma, weights won't change
# otherwise, pumas that only make up a portion of the county will be downweighted
des_acs <- svydesign(ids = ~CLUSTER, weights = ~HHWT_new , strata = ~STRATA,
data = acs_data_county %>%
filter(!is.na(hh_inc) & STATEFIP == i ) %>%
dplyr::select(CLUSTER, HHWT_new, STRATA, YEAR, STATEFIP, PUMA, hh_inc, FIP))
des_acs <- convey_prep(des_acs)
county_gini <- svyby(~hh_inc, by = ~interaction(YEAR, FIP), design = des_acs, FUN = svygini, deff = FALSE)
county_gini <- county_gini %>%
mutate(gini.moe = paste0(round(hh_inc, 4), " (", round(se, 4), ")"),
STATEFIP = substr(`interaction(YEAR, FIP)`, 6, 7),
COUNTYFIP = substr(`interaction(YEAR, FIP)`, 8, 12),
YEAR = substr(`interaction(YEAR, FIP)`, 0, 4),
LEVEL = "County")
puma_list <- acs_puma %>%
dplyr::select(YEAR, CPUMA0010, State) %>%
distinct() %>%
group_by(CPUMA0010) %>%
mutate(n_years = length(unique(YEAR)),
all_years = c(n_years == 14)*1) %>%
filter(all_years == 1) %>% dplyr::select(CPUMA0010) %>%
unlist() %>%
unique()
acs_data %>%
filter(CPUMA0010 %in% puma_list)
####### join county and state estimates
county_state_gini <- bind_rows(county_state_gini,
dplyr::select(state_gini, -starts_with("interact")),
dplyr::select(county_gini, -starts_with("interact"))) %>%
mutate(FIP = paste0(STATEFIP, COUNTYFIP),
se_squared = se^2)
}
# run this to give acs_data correct state labels
acs_data <- acs_data %>%
filter(PERNUM == 1 & YEAR > 2004) %>%
mutate(State = paste0(as_factor(STATEFIP), " (",
STATEFIP,
")"),
STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)),
COUNTYFIP = paste0(
strrep("0",(5 - nchar(as.character(COUNTYFIP)))),
as.character(COUNTYFIP)),
PUMA2k = paste0(
strrep("0",(5 - nchar(as.character(PUMA)))),
as.character(PUMA)),
PUMA_ID = paste0(STATEFIP, PUMA2k))
puma_state_gini <- read.csv("puma_state_gini.csv") %>%
dplyr::select(-X) %>%
mutate(STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)))
# run second loop to output ses
for(i in c("06", "12", "36", "42", "48")){
df.state.puma.wide <- puma_state_gini %>%
filter(STATEFIP == i & YEAR > 2004) %>%
dplyr::select(YEAR, se, PUMA, LEVEL) %>%
mutate(PUMA = replace(as.character(PUMA), LEVEL == "State",
first(acs_data$State[acs_data$STATEFIP == i]))) %>%
dplyr::select(YEAR, se, PUMA) %>%
group_by(YEAR) %>%
pivot_wider(names_from = PUMA, values_from = se)
print(kable(df.state.puma.wide, caption = "Gini standard errors for the five most populous states and their PUMAs with complete data (2005-2018)") %>%
kable_styling() %>%
scroll_box(width = "900px", height = "500px"))
}
Gini standard errors for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
California (6)
|
49
|
50
|
51
|
52
|
53
|
54
|
55
|
56
|
57
|
58
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
66
|
67
|
68
|
69
|
70
|
71
|
72
|
73
|
74
|
75
|
76
|
77
|
78
|
79
|
80
|
81
|
82
|
83
|
84
|
85
|
86
|
87
|
88
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131
|
132
|
133
|
134
|
135
|
136
|
137
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
157
|
158
|
|
2005
|
0.0012740
|
0.0175566
|
0.0158571
|
0.0152273
|
0.0238119
|
0.0192410
|
0.0160332
|
0.0195127
|
0.0185182
|
0.0130023
|
0.0122855
|
0.0129967
|
0.0133535
|
0.0231022
|
0.0068103
|
0.0128721
|
0.0146393
|
0.0078690
|
0.0214774
|
0.0149719
|
0.0085642
|
0.0223949
|
0.0181853
|
0.0104228
|
0.0073620
|
0.0197085
|
0.0068355
|
0.0138938
|
0.0191520
|
0.0162579
|
0.0180701
|
0.0196789
|
0.0262962
|
0.0078435
|
0.0151735
|
0.0202614
|
0.0111046
|
0.0197980
|
0.0125703
|
0.0241060
|
0.0174864
|
0.0188439
|
0.0203217
|
0.0153702
|
0.0105480
|
0.0168136
|
0.0104983
|
0.0127653
|
0.0097884
|
0.0208145
|
0.0170502
|
0.0145437
|
0.0185695
|
0.0157123
|
0.0122006
|
0.0119268
|
0.0100403
|
0.0355828
|
0.0043611
|
0.0142441
|
0.0103301
|
0.0120285
|
0.0061537
|
0.0148956
|
0.0059890
|
0.0067407
|
0.0114461
|
0.0080661
|
0.0116720
|
0.0079246
|
0.0091117
|
0.0146930
|
0.0127525
|
0.0160379
|
0.0175084
|
0.0176455
|
0.0153672
|
0.0161149
|
0.0172561
|
0.0187432
|
0.0156827
|
0.0096846
|
0.0126033
|
0.0153811
|
0.0160916
|
0.0185810
|
0.0183703
|
0.0154296
|
0.0148465
|
0.0103882
|
0.0111236
|
0.0086473
|
0.0235671
|
0.0191348
|
0.0091254
|
0.0203551
|
0.0164730
|
0.0119476
|
0.0158558
|
0.0184474
|
0.0246478
|
0.0160612
|
0.0149828
|
0.0144002
|
0.0173589
|
0.0155112
|
0.0165364
|
0.0211546
|
0.0118663
|
0.0076507
|
0.0133710
|
|
2006
|
0.0011427
|
0.0151727
|
0.0161285
|
0.0145950
|
0.0171685
|
0.0120929
|
0.0182625
|
0.0228932
|
0.0155049
|
0.0160846
|
0.0122773
|
0.0193224
|
0.0136716
|
0.0149365
|
0.0061503
|
0.0124783
|
0.0134380
|
0.0082622
|
0.0148980
|
0.0176217
|
0.0081928
|
0.0150458
|
0.0148859
|
0.0087448
|
0.0061256
|
0.0159408
|
0.0065547
|
0.0114334
|
0.0155974
|
0.0128072
|
0.0082835
|
0.0194018
|
0.0167231
|
0.0065999
|
0.0172025
|
0.0159424
|
0.0120987
|
0.0159479
|
0.0100928
|
0.0142933
|
0.0100088
|
0.0287043
|
0.0229599
|
0.0109928
|
0.0106865
|
0.0148638
|
0.0109817
|
0.0143059
|
0.0098340
|
0.0178391
|
0.0151596
|
0.0110213
|
0.0261542
|
0.0174739
|
0.0138261
|
0.0138593
|
0.0113129
|
0.0176629
|
0.0041755
|
0.0113182
|
0.0093901
|
0.0091280
|
0.0051348
|
0.0165017
|
0.0060611
|
0.0064246
|
0.0095215
|
0.0066666
|
0.0112710
|
0.0076941
|
0.0089731
|
0.0158412
|
0.0092966
|
0.0185721
|
0.0194116
|
0.0152688
|
0.0169215
|
0.0157298
|
0.0170707
|
0.0197113
|
0.0164060
|
0.0082875
|
0.0148402
|
0.0141728
|
0.0148903
|
0.0164741
|
0.0143599
|
0.0146435
|
0.0150110
|
0.0096981
|
0.0101903
|
0.0073628
|
0.0178469
|
0.0191207
|
0.0101439
|
0.0161620
|
0.0174797
|
0.0153573
|
0.0162334
|
0.0151597
|
0.0157569
|
0.0183086
|
0.0128155
|
0.0254944
|
0.0155320
|
0.0108670
|
0.0171963
|
0.0193970
|
0.0131753
|
0.0068706
|
0.0136389
|
|
2007
|
0.0011499
|
0.0152690
|
0.0162656
|
0.0133149
|
0.0172824
|
0.0158514
|
0.0151707
|
0.0169435
|
0.0147962
|
0.0140425
|
0.0124919
|
0.0147937
|
0.0127861
|
0.0169643
|
0.0058032
|
0.0116015
|
0.0152500
|
0.0074939
|
0.0184915
|
0.0211461
|
0.0103376
|
0.0154131
|
0.0164379
|
0.0082417
|
0.0062696
|
0.0150704
|
0.0063961
|
0.0138081
|
0.0179493
|
0.0157806
|
0.0080294
|
0.0186704
|
0.0211654
|
0.0071909
|
0.0169713
|
0.0305620
|
0.0124228
|
0.0134548
|
0.0092356
|
0.0445047
|
0.0094859
|
0.0191681
|
0.0131640
|
0.0136015
|
0.0101375
|
0.0138279
|
0.0110805
|
0.0123861
|
0.0117108
|
0.0236807
|
0.0158787
|
0.0121036
|
0.0233848
|
0.0154619
|
0.0130111
|
0.0160957
|
0.0106778
|
0.0160700
|
0.0039546
|
0.0109020
|
0.0093557
|
0.0090953
|
0.0057854
|
0.0150052
|
0.0054305
|
0.0055008
|
0.0099332
|
0.0068081
|
0.0082732
|
0.0080617
|
0.0081695
|
0.0152159
|
0.0096508
|
0.0149448
|
0.0148328
|
0.0162921
|
0.0155864
|
0.0147709
|
0.0172132
|
0.0203478
|
0.0190018
|
0.0109453
|
0.0131139
|
0.0151390
|
0.0204930
|
0.0175102
|
0.0156883
|
0.0143475
|
0.0142198
|
0.0097518
|
0.0110194
|
0.0076429
|
0.0156233
|
0.0183309
|
0.0082641
|
0.0220062
|
0.0173196
|
0.0123562
|
0.0170238
|
0.0155073
|
0.0145335
|
0.0141824
|
0.0146570
|
0.0186979
|
0.0191830
|
0.0124755
|
0.0159182
|
0.0217537
|
0.0117667
|
0.0070515
|
0.0127005
|
|
2008
|
0.0011414
|
0.0130155
|
0.0150498
|
0.0132278
|
0.0144146
|
0.0137099
|
0.0169719
|
0.0148367
|
0.0134356
|
0.0130822
|
0.0124079
|
0.0125987
|
0.0120554
|
0.0212633
|
0.0060890
|
0.0115671
|
0.0135779
|
0.0072744
|
0.0228068
|
0.0183933
|
0.0079952
|
0.0120794
|
0.0177151
|
0.0084224
|
0.0063647
|
0.0156695
|
0.0060653
|
0.0121070
|
0.0186338
|
0.0138609
|
0.0087706
|
0.0170065
|
0.0185219
|
0.0065726
|
0.0148010
|
0.0162662
|
0.0117661
|
0.0154568
|
0.0113831
|
0.0164156
|
0.0104263
|
0.0183572
|
0.0156210
|
0.0173058
|
0.0111613
|
0.0150194
|
0.0105075
|
0.0152130
|
0.0112581
|
0.0139831
|
0.0205582
|
0.0111923
|
0.0214920
|
0.0174187
|
0.0135487
|
0.0143856
|
0.0099348
|
0.0220692
|
0.0041269
|
0.0111052
|
0.0106523
|
0.0099060
|
0.0048859
|
0.0135222
|
0.0052281
|
0.0068618
|
0.0093076
|
0.0068853
|
0.0091670
|
0.0078831
|
0.0095703
|
0.0145728
|
0.0092989
|
0.0206862
|
0.0154809
|
0.0147202
|
0.0158375
|
0.0141349
|
0.0206501
|
0.0180207
|
0.0188391
|
0.0082167
|
0.0116758
|
0.0135379
|
0.0153523
|
0.0169228
|
0.0146469
|
0.0143613
|
0.0139643
|
0.0093781
|
0.0098862
|
0.0073693
|
0.0150410
|
0.0189197
|
0.0086096
|
0.0227360
|
0.0173508
|
0.0120514
|
0.0154382
|
0.0135613
|
0.0159755
|
0.0184768
|
0.0137328
|
0.0189629
|
0.0146170
|
0.0084466
|
0.0181532
|
0.0144403
|
0.0144745
|
0.0072888
|
0.0152555
|
|
2009
|
0.0010907
|
0.0151986
|
0.0137176
|
0.0131516
|
0.0289504
|
0.0158522
|
0.0132575
|
0.0155939
|
0.0147062
|
0.0125349
|
0.0143250
|
0.0124565
|
0.0118198
|
0.0157151
|
0.0062165
|
0.0127987
|
0.0115044
|
0.0075870
|
0.0183510
|
0.0157328
|
0.0078603
|
0.0211389
|
0.0171714
|
0.0075337
|
0.0059777
|
0.0211035
|
0.0061137
|
0.0097896
|
0.0162523
|
0.0165495
|
0.0067604
|
0.0200774
|
0.0141517
|
0.0065291
|
0.0154952
|
0.0159531
|
0.0119964
|
0.0160618
|
0.0085899
|
0.0152107
|
0.0092706
|
0.0236129
|
0.0135258
|
0.0124140
|
0.0110730
|
0.0153806
|
0.0112264
|
0.0129282
|
0.0102395
|
0.0181786
|
0.0179256
|
0.0102806
|
0.0214232
|
0.0153063
|
0.0110970
|
0.0173723
|
0.0091937
|
0.0135149
|
0.0039158
|
0.0113087
|
0.0135917
|
0.0109240
|
0.0048564
|
0.0130843
|
0.0057972
|
0.0060299
|
0.0098628
|
0.0061970
|
0.0097751
|
0.0076250
|
0.0082912
|
0.0163305
|
0.0095036
|
0.0174392
|
0.0157059
|
0.0133895
|
0.0150812
|
0.0146923
|
0.0173286
|
0.0169089
|
0.0177632
|
0.0078469
|
0.0120823
|
0.0140110
|
0.0156472
|
0.0141108
|
0.0144086
|
0.0119928
|
0.0143678
|
0.0100121
|
0.0110491
|
0.0071372
|
0.0138654
|
0.0169047
|
0.0079481
|
0.0160887
|
0.0122400
|
0.0115750
|
0.0178023
|
0.0160199
|
0.0154289
|
0.0135652
|
0.0126281
|
0.0147168
|
0.0139392
|
0.0085604
|
0.0213330
|
0.0174254
|
0.0120277
|
0.0066292
|
0.0126803
|
|
2010
|
0.0010522
|
0.0135106
|
0.0151071
|
0.0131822
|
0.0163821
|
0.0138189
|
0.0143008
|
0.0159025
|
0.0132569
|
0.0134200
|
0.0125600
|
0.0116917
|
0.0190929
|
0.0161240
|
0.0058410
|
0.0112813
|
0.0138268
|
0.0072824
|
0.0186685
|
0.0142770
|
0.0071988
|
0.0145117
|
0.0163626
|
0.0079997
|
0.0059607
|
0.0134795
|
0.0059679
|
0.0106208
|
0.0170175
|
0.0128856
|
0.0065942
|
0.0148657
|
0.0172874
|
0.0060549
|
0.0127666
|
0.0166964
|
0.0117605
|
0.0133105
|
0.0081118
|
0.0151949
|
0.0108502
|
0.0176484
|
0.0145038
|
0.0123401
|
0.0150678
|
0.0159762
|
0.0101977
|
0.0138608
|
0.0098074
|
0.0206538
|
0.0166463
|
0.0098368
|
0.0248944
|
0.0168227
|
0.0116038
|
0.0185519
|
0.0098383
|
0.0182063
|
0.0037839
|
0.0113002
|
0.0100626
|
0.0089761
|
0.0049707
|
0.0159170
|
0.0053356
|
0.0054320
|
0.0099930
|
0.0063382
|
0.0088630
|
0.0076591
|
0.0081567
|
0.0151077
|
0.0086710
|
0.0183276
|
0.0157130
|
0.0142903
|
0.0150168
|
0.0143385
|
0.0139676
|
0.0170654
|
0.0207563
|
0.0077548
|
0.0137738
|
0.0127907
|
0.0144956
|
0.0145842
|
0.0132778
|
0.0158614
|
0.0135837
|
0.0091993
|
0.0120845
|
0.0074534
|
0.0153507
|
0.0144342
|
0.0076573
|
0.0158007
|
0.0141690
|
0.0107317
|
0.0141513
|
0.0132000
|
0.0182942
|
0.0145628
|
0.0130572
|
0.0132068
|
0.0142378
|
0.0099358
|
0.0143974
|
0.0173536
|
0.0115065
|
0.0064536
|
0.0137064
|
|
2011
|
0.0011797
|
0.0167572
|
0.0138558
|
0.0129226
|
0.0172096
|
0.0136056
|
0.0169239
|
0.0171527
|
0.0156078
|
0.0143670
|
0.0117875
|
0.0215373
|
0.0148667
|
0.0153019
|
0.0083103
|
0.0136983
|
0.0135790
|
0.0071229
|
0.0174437
|
0.0164094
|
0.0077841
|
0.0234851
|
0.0153079
|
0.0081145
|
0.0066700
|
0.0194684
|
0.0060490
|
0.0107672
|
0.0224971
|
0.0132604
|
0.0082725
|
0.0135116
|
0.0141346
|
0.0074705
|
0.0169787
|
0.0216594
|
0.0108866
|
0.0201022
|
0.0083982
|
0.0138997
|
0.0087532
|
0.0196354
|
0.0194904
|
0.0121578
|
0.0186394
|
0.0153409
|
0.0097381
|
0.0131241
|
0.0086360
|
0.0146856
|
0.0188601
|
0.0097895
|
0.0199978
|
0.0204018
|
0.0130490
|
0.0152993
|
0.0101873
|
0.0162115
|
0.0039453
|
0.0144821
|
0.0113365
|
0.0119089
|
0.0057739
|
0.0167397
|
0.0065276
|
0.0069515
|
0.0118565
|
0.0068930
|
0.0103830
|
0.0083662
|
0.0081043
|
0.0129867
|
0.0085303
|
0.0128916
|
0.0137528
|
0.0164903
|
0.0161940
|
0.0146474
|
0.0161149
|
0.0189814
|
0.0175820
|
0.0083495
|
0.0125913
|
0.0150600
|
0.0155996
|
0.0167266
|
0.0145264
|
0.0129689
|
0.0141361
|
0.0089288
|
0.0105299
|
0.0078052
|
0.0144348
|
0.0173082
|
0.0089715
|
0.0180633
|
0.0169389
|
0.0108174
|
0.0126579
|
0.0133735
|
0.0200976
|
0.0192137
|
0.0144648
|
0.0154873
|
0.0158128
|
0.0091367
|
0.0174053
|
0.0153942
|
0.0099782
|
0.0074336
|
0.0132007
|
|
2012
|
0.0011265
|
0.0149824
|
0.0116825
|
0.0133340
|
0.0154107
|
0.0141138
|
0.0159759
|
0.0160830
|
0.0150525
|
0.0145417
|
0.0133158
|
0.0171513
|
0.0151235
|
0.0173488
|
0.0056087
|
0.0118446
|
0.0147704
|
0.0084491
|
0.0156837
|
0.0188390
|
0.0088509
|
0.0236514
|
0.0140763
|
0.0081151
|
0.0058388
|
0.0144182
|
0.0062988
|
0.0130751
|
0.0153119
|
0.0118708
|
0.0070871
|
0.0243873
|
0.0149599
|
0.0065658
|
0.0126892
|
0.0187434
|
0.0111134
|
0.0136476
|
0.0083351
|
0.0141264
|
0.0098380
|
0.0181873
|
0.0143142
|
0.0133389
|
0.0110567
|
0.0179405
|
0.0120676
|
0.0134974
|
0.0093367
|
0.0141449
|
0.0212519
|
0.0099087
|
0.0201696
|
0.0182935
|
0.0128939
|
0.0129587
|
0.0087301
|
0.0144554
|
0.0041792
|
0.0124502
|
0.0086612
|
0.0085983
|
0.0051578
|
0.0162821
|
0.0061012
|
0.0064017
|
0.0094393
|
0.0078730
|
0.0100610
|
0.0082825
|
0.0090601
|
0.0170092
|
0.0096842
|
0.0171161
|
0.0156381
|
0.0169880
|
0.0168487
|
0.0153919
|
0.0166386
|
0.0179516
|
0.0176467
|
0.0122286
|
0.0153579
|
0.0244608
|
0.0176207
|
0.0139112
|
0.0144794
|
0.0139009
|
0.0154911
|
0.0101238
|
0.0114685
|
0.0076719
|
0.0184083
|
0.0196823
|
0.0078198
|
0.0148104
|
0.0134657
|
0.0129352
|
0.0119564
|
0.0135941
|
0.0170183
|
0.0173035
|
0.0127261
|
0.0157897
|
0.0174410
|
0.0092812
|
0.0162215
|
0.0161129
|
0.0114319
|
0.0075145
|
0.0154586
|
|
2013
|
0.0011442
|
0.0151787
|
0.0124223
|
0.0117633
|
0.0191274
|
0.0151295
|
0.0153104
|
0.0181082
|
0.0154014
|
0.0130191
|
0.0116940
|
0.0154652
|
0.0140653
|
0.0284211
|
0.0057363
|
0.0117318
|
0.0159753
|
0.0079912
|
0.0166344
|
0.0163271
|
0.0083065
|
0.0202160
|
0.0174349
|
0.0075807
|
0.0058831
|
0.0143434
|
0.0065120
|
0.0122331
|
0.0162084
|
0.0149885
|
0.0084535
|
0.0180826
|
0.0143887
|
0.0068039
|
0.0153174
|
0.0210093
|
0.0117166
|
0.0161766
|
0.0089565
|
0.0155856
|
0.0118800
|
0.0172487
|
0.0140504
|
0.0114639
|
0.0112191
|
0.0153384
|
0.0115532
|
0.0133553
|
0.0092109
|
0.0187471
|
0.0168729
|
0.0098355
|
0.0208065
|
0.0180251
|
0.0115895
|
0.0115420
|
0.0096593
|
0.0137974
|
0.0040119
|
0.0120408
|
0.0098725
|
0.0103701
|
0.0053440
|
0.0155115
|
0.0062578
|
0.0058966
|
0.0107873
|
0.0103917
|
0.0095428
|
0.0087672
|
0.0087961
|
0.0141390
|
0.0105666
|
0.0136103
|
0.0142811
|
0.0195447
|
0.0221581
|
0.0149048
|
0.0214560
|
0.0166134
|
0.0157990
|
0.0098383
|
0.0126397
|
0.0176898
|
0.0152136
|
0.0151295
|
0.0155152
|
0.0132686
|
0.0140269
|
0.0098441
|
0.0101498
|
0.0075195
|
0.0150133
|
0.0177198
|
0.0079685
|
0.0154815
|
0.0120342
|
0.0125804
|
0.0149247
|
0.0143018
|
0.0155837
|
0.0150658
|
0.0119877
|
0.0189975
|
0.0147247
|
0.0098632
|
0.0147389
|
0.0245941
|
0.0128745
|
0.0068325
|
0.0135798
|
|
2014
|
0.0011600
|
0.0146915
|
0.0122690
|
0.0144800
|
0.0184583
|
0.0182188
|
0.0153784
|
0.0149926
|
0.0149643
|
0.0122242
|
0.0147944
|
0.0136207
|
0.0164143
|
0.0387237
|
0.0063329
|
0.0151382
|
0.0146623
|
0.0078271
|
0.0153609
|
0.0209405
|
0.0087991
|
0.0183121
|
0.0174469
|
0.0080973
|
0.0059146
|
0.0168284
|
0.0058262
|
0.0127963
|
0.0261893
|
0.0153807
|
0.0083095
|
0.0193507
|
0.0174273
|
0.0064620
|
0.0125652
|
0.0155647
|
0.0134998
|
0.0282409
|
0.0079752
|
0.0268857
|
0.0081779
|
0.0238659
|
0.0132758
|
0.0114059
|
0.0109606
|
0.0156802
|
0.0116953
|
0.0150657
|
0.0092980
|
0.0143330
|
0.0169504
|
0.0116556
|
0.0193896
|
0.0177006
|
0.0122703
|
0.0228956
|
0.0102019
|
0.0170682
|
0.0044642
|
0.0119277
|
0.0102111
|
0.0106246
|
0.0052942
|
0.0167467
|
0.0074325
|
0.0059643
|
0.0100027
|
0.0073102
|
0.0088893
|
0.0083855
|
0.0101358
|
0.0153768
|
0.0111227
|
0.0170023
|
0.0146759
|
0.0158002
|
0.0152763
|
0.0145699
|
0.0207288
|
0.0176850
|
0.0156062
|
0.0085005
|
0.0129784
|
0.0174278
|
0.0170087
|
0.0156960
|
0.0148813
|
0.0133523
|
0.0133672
|
0.0113974
|
0.0102041
|
0.0072693
|
0.0175866
|
0.0176930
|
0.0080208
|
0.0182470
|
0.0173709
|
0.0126869
|
0.0127442
|
0.0140730
|
0.0151045
|
0.0140144
|
0.0143455
|
0.0183893
|
0.0156008
|
0.0129650
|
0.0183236
|
0.0230738
|
0.0156415
|
0.0069581
|
0.0138386
|
|
2015
|
0.0011187
|
0.0140768
|
0.0107615
|
0.0136471
|
0.0183899
|
0.0136810
|
0.0140798
|
0.0174378
|
0.0124086
|
0.0114628
|
0.0124300
|
0.0198026
|
0.0160279
|
0.0193664
|
0.0061100
|
0.0133987
|
0.0146351
|
0.0074857
|
0.0179509
|
0.0138931
|
0.0099185
|
0.0167272
|
0.0259237
|
0.0079270
|
0.0061351
|
0.0164838
|
0.0058766
|
0.0115470
|
0.0166337
|
0.0143619
|
0.0072805
|
0.0160225
|
0.0174851
|
0.0066846
|
0.0146485
|
0.0226667
|
0.0116048
|
0.0179159
|
0.0076741
|
0.0220689
|
0.0115083
|
0.0174842
|
0.0131932
|
0.0122390
|
0.0111872
|
0.0147865
|
0.0093014
|
0.0141641
|
0.0089275
|
0.0171696
|
0.0135607
|
0.0112315
|
0.0217464
|
0.0214831
|
0.0123383
|
0.0135427
|
0.0113331
|
0.0132922
|
0.0040547
|
0.0112826
|
0.0099026
|
0.0099380
|
0.0047950
|
0.0140026
|
0.0059307
|
0.0060840
|
0.0090338
|
0.0068931
|
0.0097562
|
0.0079666
|
0.0081225
|
0.0142715
|
0.0094761
|
0.0176834
|
0.0129737
|
0.0148540
|
0.0185209
|
0.0147857
|
0.0169943
|
0.0182657
|
0.0216198
|
0.0081455
|
0.0122768
|
0.0155048
|
0.0165672
|
0.0172932
|
0.0150414
|
0.0127037
|
0.0148412
|
0.0101503
|
0.0122716
|
0.0079075
|
0.0154489
|
0.0152839
|
0.0079361
|
0.0144190
|
0.0146698
|
0.0139796
|
0.0113839
|
0.0129118
|
0.0177436
|
0.0171022
|
0.0124688
|
0.0191146
|
0.0158624
|
0.0100596
|
0.0150023
|
0.0218469
|
0.0125329
|
0.0070835
|
0.0133472
|
|
2016
|
0.0011292
|
0.0135162
|
0.0139880
|
0.0132254
|
0.0246015
|
0.0134673
|
0.0140232
|
0.0156488
|
0.0138181
|
0.0122900
|
0.0115683
|
0.0163873
|
0.0161929
|
0.0197483
|
0.0058814
|
0.0154519
|
0.0173680
|
0.0080133
|
0.0310538
|
0.0221368
|
0.0094286
|
0.0171482
|
0.0195836
|
0.0080502
|
0.0060146
|
0.0184784
|
0.0066085
|
0.0118845
|
0.0212641
|
0.0145814
|
0.0076506
|
0.0148574
|
0.0144519
|
0.0064366
|
0.0137053
|
0.0165400
|
0.0127862
|
0.0159467
|
0.0087051
|
0.0170547
|
0.0119581
|
0.0165064
|
0.0149362
|
0.0155161
|
0.0109939
|
0.0123400
|
0.0132832
|
0.0118763
|
0.0087411
|
0.0164641
|
0.0180010
|
0.0132016
|
0.0203389
|
0.0173239
|
0.0117621
|
0.0166007
|
0.0100245
|
0.0152251
|
0.0043689
|
0.0134365
|
0.0108912
|
0.0090965
|
0.0052870
|
0.0127669
|
0.0055516
|
0.0057011
|
0.0102480
|
0.0065614
|
0.0100384
|
0.0087310
|
0.0093316
|
0.0178706
|
0.0102546
|
0.0147070
|
0.0149491
|
0.0149170
|
0.0164534
|
0.0139375
|
0.0160895
|
0.0215181
|
0.0169664
|
0.0110637
|
0.0127326
|
0.0192441
|
0.0159840
|
0.0137405
|
0.0166213
|
0.0151441
|
0.0135150
|
0.0096432
|
0.0111462
|
0.0073521
|
0.0148736
|
0.0170861
|
0.0079871
|
0.0173578
|
0.0140186
|
0.0126955
|
0.0142247
|
0.0143242
|
0.0157712
|
0.0175198
|
0.0139003
|
0.0189551
|
0.0154854
|
0.0097381
|
0.0167964
|
0.0298431
|
0.0141348
|
0.0068554
|
0.0160161
|
|
2017
|
0.0010991
|
0.0123177
|
0.0123034
|
0.0132707
|
0.0168207
|
0.0150001
|
0.0139320
|
0.0187761
|
0.0133648
|
0.0129792
|
0.0136688
|
0.0214580
|
0.0149172
|
0.0172523
|
0.0058890
|
0.0139743
|
0.0129551
|
0.0081178
|
0.0223547
|
0.0202160
|
0.0078719
|
0.0151898
|
0.0193378
|
0.0076166
|
0.0058279
|
0.0194200
|
0.0060764
|
0.0104961
|
0.0162032
|
0.0151233
|
0.0071390
|
0.0163773
|
0.0153767
|
0.0066771
|
0.0137289
|
0.0181038
|
0.0101310
|
0.0143521
|
0.0104860
|
0.0242843
|
0.0083087
|
0.0311366
|
0.0198581
|
0.0137836
|
0.0152011
|
0.0169501
|
0.0107920
|
0.0121635
|
0.0096110
|
0.0174009
|
0.0190820
|
0.0096638
|
0.0174288
|
0.0167918
|
0.0124359
|
0.0150547
|
0.0091989
|
0.0129694
|
0.0041456
|
0.0121326
|
0.0098401
|
0.0092561
|
0.0052247
|
0.0178983
|
0.0053562
|
0.0063326
|
0.0089973
|
0.0065097
|
0.0098669
|
0.0074012
|
0.0088939
|
0.0138521
|
0.0163345
|
0.0141308
|
0.0153781
|
0.0145232
|
0.0149322
|
0.0143070
|
0.0179940
|
0.0151481
|
0.0175661
|
0.0083273
|
0.0118902
|
0.0131929
|
0.0170629
|
0.0143885
|
0.0136013
|
0.0137898
|
0.0134439
|
0.0101308
|
0.0108392
|
0.0072097
|
0.0181157
|
0.0165213
|
0.0078656
|
0.0146817
|
0.0128798
|
0.0125590
|
0.0145139
|
0.0144032
|
0.0147681
|
0.0149909
|
0.0128503
|
0.0160472
|
0.0179754
|
0.0092535
|
0.0158294
|
0.0210275
|
0.0115385
|
0.0082757
|
0.0129002
|
|
2018
|
0.0011469
|
0.0137910
|
0.0124778
|
0.0143506
|
0.0159537
|
0.0130115
|
0.0177226
|
0.0153131
|
0.0123891
|
0.0128603
|
0.0113360
|
0.0156867
|
0.0149418
|
0.0253065
|
0.0058616
|
0.0154188
|
0.0193413
|
0.0070496
|
0.0174533
|
0.0205664
|
0.0092818
|
0.0178445
|
0.0177774
|
0.0079104
|
0.0061105
|
0.0191957
|
0.0066250
|
0.0121249
|
0.0188802
|
0.0150671
|
0.0069788
|
0.0245770
|
0.0210044
|
0.0064981
|
0.0139695
|
0.0169032
|
0.0113446
|
0.0141802
|
0.0087954
|
0.0178001
|
0.0109794
|
0.0190006
|
0.0175431
|
0.0136373
|
0.0124843
|
0.0202763
|
0.0109549
|
0.0161857
|
0.0095619
|
0.0199899
|
0.0173228
|
0.0102464
|
0.0204278
|
0.0178091
|
0.0124382
|
0.0139489
|
0.0104013
|
0.0128470
|
0.0042490
|
0.0135065
|
0.0096618
|
0.0119093
|
0.0060647
|
0.0175903
|
0.0057533
|
0.0079569
|
0.0084774
|
0.0083007
|
0.0106479
|
0.0082150
|
0.0079898
|
0.0183392
|
0.0108334
|
0.0174930
|
0.0148631
|
0.0138792
|
0.0158737
|
0.0153205
|
0.0207748
|
0.0163863
|
0.0197393
|
0.0086100
|
0.0135776
|
0.0164163
|
0.0184358
|
0.0158070
|
0.0132901
|
0.0146442
|
0.0142422
|
0.0101015
|
0.0115125
|
0.0076100
|
0.0151720
|
0.0155043
|
0.0084934
|
0.0171755
|
0.0125664
|
0.0118141
|
0.0118694
|
0.0138153
|
0.0140504
|
0.0143573
|
0.0140462
|
0.0160684
|
0.0171349
|
0.0142134
|
0.0160415
|
0.0256240
|
0.0157372
|
0.0070279
|
0.0131858
|
Gini standard errors for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
Florida (12)
|
203
|
204
|
205
|
206
|
207
|
208
|
209
|
210
|
211
|
212
|
213
|
214
|
215
|
216
|
217
|
218
|
219
|
220
|
221
|
222
|
223
|
224
|
225
|
226
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
|
2005
|
0.0016341
|
0.0124953
|
0.0059409
|
0.0128422
|
0.0142351
|
0.0165227
|
0.0140057
|
0.0145948
|
0.0065609
|
0.0078546
|
0.0149164
|
0.0090730
|
0.0136468
|
0.0105818
|
0.0136474
|
0.0161554
|
0.0166100
|
0.0146255
|
0.0078011
|
0.0159171
|
0.0145107
|
0.0149842
|
0.0130817
|
0.0148290
|
0.0158688
|
0.0298637
|
0.0141304
|
0.0278129
|
0.0080042
|
0.0114750
|
0.0106374
|
0.0157276
|
0.0076406
|
0.0135781
|
0.0076016
|
0.0143009
|
0.0153078
|
0.0078953
|
0.0189828
|
0.0130559
|
0.0116061
|
0.0193102
|
0.0127475
|
0.0147887
|
0.0172537
|
0.0170658
|
0.0162630
|
0.0147171
|
0.0150759
|
0.0098317
|
0.0138100
|
0.0082948
|
0.0273454
|
0.0138819
|
0.0160374
|
0.0211969
|
0.0162404
|
0.0158257
|
0.0092973
|
0.0096405
|
|
2006
|
0.0015906
|
0.0134263
|
0.0049428
|
0.0140714
|
0.0240762
|
0.0161901
|
0.0170064
|
0.0151082
|
0.0068364
|
0.0085196
|
0.0173296
|
0.0083834
|
0.0112849
|
0.0094080
|
0.0117496
|
0.0207521
|
0.0205388
|
0.0179924
|
0.0100137
|
0.0138853
|
0.0159602
|
0.0165699
|
0.0126648
|
0.0168322
|
0.0183594
|
0.0213828
|
0.0104073
|
0.0157520
|
0.0081989
|
0.0094829
|
0.0107600
|
0.0158735
|
0.0072297
|
0.0128812
|
0.0069070
|
0.0145489
|
0.0225056
|
0.0077966
|
0.0212023
|
0.0138841
|
0.0106022
|
0.0184968
|
0.0198534
|
0.0147757
|
0.0140873
|
0.0163691
|
0.0137001
|
0.0155577
|
0.0124230
|
0.0088909
|
0.0109748
|
0.0077295
|
0.0143043
|
0.0147398
|
0.0145973
|
0.0153508
|
0.0113046
|
0.0157465
|
0.0096094
|
0.0096803
|
|
2007
|
0.0015849
|
0.0130440
|
0.0050453
|
0.0118064
|
0.0139540
|
0.0169913
|
0.0209045
|
0.0160421
|
0.0074272
|
0.0071218
|
0.0181710
|
0.0090769
|
0.0167268
|
0.0109689
|
0.0124894
|
0.0236868
|
0.0172482
|
0.0166319
|
0.0072956
|
0.0153279
|
0.0133802
|
0.0152757
|
0.0159881
|
0.0128632
|
0.0192964
|
0.0210797
|
0.0118305
|
0.0154506
|
0.0080491
|
0.0095103
|
0.0105866
|
0.0150424
|
0.0076243
|
0.0125453
|
0.0065298
|
0.0164700
|
0.0159644
|
0.0080399
|
0.0188256
|
0.0152181
|
0.0122203
|
0.0216352
|
0.0358648
|
0.0161579
|
0.0173586
|
0.0137698
|
0.0140281
|
0.0159689
|
0.0130728
|
0.0093877
|
0.0119041
|
0.0080168
|
0.0190045
|
0.0169122
|
0.0157353
|
0.0148479
|
0.0114384
|
0.0239719
|
0.0090589
|
0.0102509
|
|
2008
|
0.0015254
|
0.0116658
|
0.0052320
|
0.0129061
|
0.0124361
|
0.0163187
|
0.0196194
|
0.0148908
|
0.0065069
|
0.0071753
|
0.0153929
|
0.0109847
|
0.0136436
|
0.0095768
|
0.0111777
|
0.0209776
|
0.0153548
|
0.0142463
|
0.0072327
|
0.0127734
|
0.0140462
|
0.0128496
|
0.0174799
|
0.0192524
|
0.0146201
|
0.0157942
|
0.0107465
|
0.0144888
|
0.0079408
|
0.0109144
|
0.0170210
|
0.0123705
|
0.0066444
|
0.0111447
|
0.0069885
|
0.0113876
|
0.0229186
|
0.0066596
|
0.0160774
|
0.0126585
|
0.0117390
|
0.0180768
|
0.0147199
|
0.0169250
|
0.0138758
|
0.0186622
|
0.0130210
|
0.0159759
|
0.0126743
|
0.0087848
|
0.0133426
|
0.0075057
|
0.0172427
|
0.0125159
|
0.0245501
|
0.0174324
|
0.0104701
|
0.0147598
|
0.0099113
|
0.0088473
|
|
2009
|
0.0014901
|
0.0138440
|
0.0046910
|
0.0105931
|
0.0154197
|
0.0156230
|
0.0165695
|
0.0157465
|
0.0072833
|
0.0075629
|
0.0143703
|
0.0077921
|
0.0138355
|
0.0099483
|
0.0107638
|
0.0176706
|
0.0170797
|
0.0133235
|
0.0068825
|
0.0155718
|
0.0137554
|
0.0135820
|
0.0152964
|
0.0169218
|
0.0162410
|
0.0149997
|
0.0126957
|
0.0134579
|
0.0075296
|
0.0095886
|
0.0122070
|
0.0133487
|
0.0072857
|
0.0111663
|
0.0077099
|
0.0114456
|
0.0171946
|
0.0072847
|
0.0171667
|
0.0116812
|
0.0106706
|
0.0166722
|
0.0148889
|
0.0148694
|
0.0134325
|
0.0143125
|
0.0124497
|
0.0171431
|
0.0126250
|
0.0089327
|
0.0122814
|
0.0071594
|
0.0160743
|
0.0137514
|
0.0180248
|
0.0149028
|
0.0127926
|
0.0152246
|
0.0090382
|
0.0091067
|
|
2010
|
0.0014865
|
0.0138245
|
0.0049843
|
0.0114372
|
0.0157974
|
0.0183650
|
0.0158902
|
0.0172443
|
0.0065580
|
0.0072325
|
0.0128478
|
0.0070700
|
0.0129045
|
0.0100678
|
0.0107776
|
0.0168640
|
0.0153834
|
0.0138937
|
0.0077238
|
0.0150164
|
0.0152394
|
0.0140315
|
0.0178909
|
0.0153118
|
0.0145072
|
0.0147684
|
0.0131884
|
0.0148304
|
0.0075992
|
0.0113705
|
0.0106979
|
0.0161696
|
0.0072420
|
0.0103694
|
0.0066611
|
0.0125527
|
0.0133470
|
0.0067634
|
0.0159343
|
0.0127263
|
0.0126300
|
0.0169345
|
0.0209372
|
0.0161239
|
0.0139104
|
0.0162679
|
0.0128592
|
0.0151777
|
0.0130583
|
0.0079704
|
0.0117589
|
0.0067597
|
0.0146680
|
0.0193874
|
0.0178707
|
0.0193598
|
0.0130145
|
0.0160881
|
0.0094055
|
0.0089385
|
|
2011
|
0.0016499
|
0.0122076
|
0.0055486
|
0.0150531
|
0.0147367
|
0.0159369
|
0.0178982
|
0.0144621
|
0.0068400
|
0.0082180
|
0.0294757
|
0.0107620
|
0.0344552
|
0.0125291
|
0.0123519
|
0.0186429
|
0.0161314
|
0.0172411
|
0.0083617
|
0.0135696
|
0.0126181
|
0.0134020
|
0.0191906
|
0.0148343
|
0.0154813
|
0.0171902
|
0.0135559
|
0.0129872
|
0.0083250
|
0.0115207
|
0.0138505
|
0.0162229
|
0.0073337
|
0.0135690
|
0.0067962
|
0.0130350
|
0.0165632
|
0.0079760
|
0.0147302
|
0.0151484
|
0.0108820
|
0.0179517
|
0.0163387
|
0.0144771
|
0.0121162
|
0.0146458
|
0.0123839
|
0.0162798
|
0.0135540
|
0.0118804
|
0.0106999
|
0.0066496
|
0.0121342
|
0.0164124
|
0.0159719
|
0.0199779
|
0.0178495
|
0.0228622
|
0.0087081
|
0.0120791
|
|
2012
|
0.0015956
|
0.0155357
|
0.0050119
|
0.0140960
|
0.0152938
|
0.0172373
|
0.0164689
|
0.0200285
|
0.0071687
|
0.0079996
|
0.0156371
|
0.0107112
|
0.0159451
|
0.0110659
|
0.0130348
|
0.0189949
|
0.0200319
|
0.0128184
|
0.0076049
|
0.0138570
|
0.0204471
|
0.0119955
|
0.0186221
|
0.0139680
|
0.0181135
|
0.0235854
|
0.0150994
|
0.0128703
|
0.0083039
|
0.0122290
|
0.0136554
|
0.0146144
|
0.0072923
|
0.0130553
|
0.0063653
|
0.0123390
|
0.0205872
|
0.0078630
|
0.0161898
|
0.0153895
|
0.0111480
|
0.0162301
|
0.0149516
|
0.0158472
|
0.0132064
|
0.0128911
|
0.0129678
|
0.0255783
|
0.0122173
|
0.0093902
|
0.0109687
|
0.0069607
|
0.0135622
|
0.0140321
|
0.0154416
|
0.0226442
|
0.0139004
|
0.0248417
|
0.0095314
|
0.0093742
|
|
2013
|
0.0015789
|
0.0134597
|
0.0047280
|
0.0141927
|
0.0144325
|
0.0136766
|
0.0134698
|
0.0159898
|
0.0071874
|
0.0086009
|
0.0147284
|
0.0097694
|
0.0221755
|
0.0103982
|
0.0132709
|
0.0167956
|
0.0232939
|
0.0223427
|
0.0071649
|
0.0125716
|
0.0113887
|
0.0126300
|
0.0153035
|
0.0158890
|
0.0206466
|
0.0189305
|
0.0117585
|
0.0127884
|
0.0077419
|
0.0124129
|
0.0107706
|
0.0143374
|
0.0076929
|
0.0098252
|
0.0072039
|
0.0140836
|
0.0156599
|
0.0077982
|
0.0160695
|
0.0164659
|
0.0106753
|
0.0168625
|
0.0176400
|
0.0183958
|
0.0144610
|
0.0132806
|
0.0136778
|
0.0162240
|
0.0114119
|
0.0079749
|
0.0134265
|
0.0076058
|
0.0139304
|
0.0161401
|
0.0178674
|
0.0169286
|
0.0160970
|
0.0174296
|
0.0095696
|
0.0097195
|
|
2014
|
0.0015471
|
0.0129251
|
0.0051327
|
0.0141346
|
0.0163254
|
0.0225494
|
0.0169715
|
0.0178268
|
0.0075338
|
0.0072186
|
0.0142111
|
0.0120563
|
0.0179484
|
0.0093912
|
0.0112316
|
0.0146189
|
0.0199715
|
0.0137640
|
0.0074140
|
0.0150685
|
0.0147917
|
0.0135422
|
0.0148751
|
0.0144393
|
0.0158779
|
0.0160086
|
0.0111837
|
0.0137104
|
0.0074430
|
0.0100229
|
0.0132204
|
0.0164520
|
0.0067938
|
0.0106208
|
0.0066563
|
0.0140710
|
0.0276505
|
0.0080903
|
0.0165131
|
0.0137135
|
0.0104819
|
0.0154836
|
0.0213077
|
0.0206511
|
0.0151543
|
0.0149561
|
0.0130557
|
0.0184603
|
0.0126605
|
0.0080660
|
0.0127709
|
0.0073563
|
0.0119882
|
0.0195440
|
0.0173732
|
0.0145528
|
0.0138631
|
0.0178245
|
0.0095997
|
0.0109542
|
|
2015
|
0.0016633
|
0.0128693
|
0.0054156
|
0.0146455
|
0.0172876
|
0.0189466
|
0.0158145
|
0.0178687
|
0.0071882
|
0.0085482
|
0.0170776
|
0.0095190
|
0.0196200
|
0.0096466
|
0.0134859
|
0.0241231
|
0.0202101
|
0.0137003
|
0.0075303
|
0.0171051
|
0.0144836
|
0.0128185
|
0.0147321
|
0.0178566
|
0.0154467
|
0.0146748
|
0.0142649
|
0.0118533
|
0.0079053
|
0.0100465
|
0.0123616
|
0.0166944
|
0.0084158
|
0.0098988
|
0.0071106
|
0.0136492
|
0.0237349
|
0.0121889
|
0.0181884
|
0.0152029
|
0.0102410
|
0.0217043
|
0.0143316
|
0.0177028
|
0.0129822
|
0.0138901
|
0.0145936
|
0.0153601
|
0.0130461
|
0.0083625
|
0.0116390
|
0.0069330
|
0.0195220
|
0.0124296
|
0.0190887
|
0.0162989
|
0.0156928
|
0.0178580
|
0.0095257
|
0.0090077
|
|
2016
|
0.0015543
|
0.0149351
|
0.0050244
|
0.0119249
|
0.0143417
|
0.0141943
|
0.0182308
|
0.0188902
|
0.0073242
|
0.0083173
|
0.0160879
|
0.0090920
|
0.0139638
|
0.0094728
|
0.0153346
|
0.0176578
|
0.0188681
|
0.0148562
|
0.0071131
|
0.0122838
|
0.0150604
|
0.0121460
|
0.0155480
|
0.0143444
|
0.0156370
|
0.0154560
|
0.0116279
|
0.0120591
|
0.0077745
|
0.0107695
|
0.0160260
|
0.0163799
|
0.0074247
|
0.0105524
|
0.0063434
|
0.0132593
|
0.0190831
|
0.0087709
|
0.0160992
|
0.0131074
|
0.0118845
|
0.0150925
|
0.0167910
|
0.0194579
|
0.0174133
|
0.0167557
|
0.0130652
|
0.0159180
|
0.0128224
|
0.0096983
|
0.0116879
|
0.0063311
|
0.0156618
|
0.0204220
|
0.0170726
|
0.0135567
|
0.0154899
|
0.0149021
|
0.0097869
|
0.0099112
|
|
2017
|
0.0015809
|
0.0144891
|
0.0057884
|
0.0127800
|
0.0149635
|
0.0179731
|
0.0174961
|
0.0167550
|
0.0068607
|
0.0103879
|
0.0144813
|
0.0092303
|
0.0173863
|
0.0087934
|
0.0110566
|
0.0194364
|
0.0159840
|
0.0137526
|
0.0065891
|
0.0136944
|
0.0127343
|
0.0140636
|
0.0151445
|
0.0144592
|
0.0171429
|
0.0155592
|
0.0133655
|
0.0110256
|
0.0089470
|
0.0105941
|
0.0124260
|
0.0172775
|
0.0071252
|
0.0095447
|
0.0065204
|
0.0127030
|
0.0155635
|
0.0080248
|
0.0165350
|
0.0146696
|
0.0106745
|
0.0191365
|
0.0197810
|
0.0160388
|
0.0144589
|
0.0168710
|
0.0126302
|
0.0178164
|
0.0136196
|
0.0079471
|
0.0115685
|
0.0068274
|
0.0158048
|
0.0164466
|
0.0169841
|
0.0158052
|
0.0132261
|
0.0159329
|
0.0090840
|
0.0108240
|
|
2018
|
0.0015908
|
0.0136409
|
0.0053086
|
0.0119962
|
0.0122951
|
0.0165051
|
0.0208668
|
0.0168476
|
0.0076328
|
0.0089074
|
0.0174427
|
0.0111554
|
0.0137969
|
0.0108349
|
0.0153614
|
0.0166445
|
0.0164834
|
0.0145481
|
0.0067843
|
0.0177204
|
0.0189611
|
0.0125593
|
0.0143930
|
0.0167119
|
0.0170327
|
0.0154245
|
0.0129220
|
0.0119129
|
0.0084698
|
0.0109207
|
0.0148290
|
0.0140675
|
0.0070209
|
0.0106057
|
0.0068669
|
0.0133372
|
0.0165831
|
0.0084531
|
0.0172024
|
0.0143843
|
0.0101253
|
0.0173676
|
0.0232324
|
0.0166431
|
0.0146353
|
0.0144619
|
0.0144919
|
0.0190884
|
0.0119506
|
0.0081548
|
0.0121113
|
0.0067933
|
0.0150642
|
0.0130779
|
0.0178000
|
0.0267053
|
0.0152550
|
0.0234287
|
0.0091880
|
0.0094101
|
Gini standard errors for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
New York (36)
|
633
|
634
|
635
|
636
|
637
|
638
|
639
|
640
|
641
|
642
|
643
|
644
|
645
|
646
|
647
|
648
|
649
|
650
|
651
|
652
|
653
|
654
|
655
|
656
|
657
|
658
|
659
|
660
|
661
|
662
|
663
|
664
|
665
|
666
|
667
|
668
|
669
|
670
|
671
|
672
|
673
|
674
|
675
|
676
|
677
|
678
|
679
|
680
|
681
|
682
|
683
|
684
|
685
|
686
|
687
|
688
|
689
|
690
|
691
|
692
|
693
|
694
|
695
|
696
|
697
|
698
|
699
|
700
|
701
|
702
|
703
|
704
|
705
|
706
|
707
|
708
|
709
|
710
|
711
|
712
|
713
|
714
|
715
|
716
|
717
|
718
|
719
|
720
|
721
|
722
|
723
|
724
|
725
|
726
|
727
|
728
|
729
|
730
|
731
|
732
|
733
|
734
|
735
|
736
|
737
|
738
|
739
|
740
|
741
|
742
|
743
|
744
|
745
|
746
|
747
|
748
|
749
|
750
|
751
|
752
|
753
|
754
|
755
|
|
2005
|
0.0020670
|
0.0161731
|
0.0121643
|
0.0214713
|
0.0064505
|
0.0223748
|
0.0149806
|
0.0144182
|
0.0091554
|
0.0164633
|
0.0177174
|
0.0155391
|
0.0321598
|
0.0182375
|
0.0210540
|
0.0138642
|
0.0311862
|
0.0187744
|
0.0218283
|
0.0241198
|
0.0122873
|
0.0133256
|
0.0133700
|
0.0209450
|
0.0079814
|
0.0148010
|
0.0183896
|
0.0247418
|
0.0223465
|
0.0131104
|
0.0216615
|
0.0178722
|
0.0261981
|
0.0171896
|
0.0108697
|
0.0142006
|
0.0134123
|
0.0158407
|
0.0149117
|
0.0172554
|
0.0303760
|
0.0229142
|
0.0124504
|
0.0139026
|
0.0155029
|
0.0213180
|
0.0183299
|
0.0193089
|
0.0162881
|
0.0136873
|
0.0116439
|
0.0176023
|
0.0188331
|
0.0172148
|
0.0145928
|
0.0190325
|
0.0198354
|
0.0181760
|
0.0201984
|
0.0203787
|
0.0209201
|
0.0174988
|
0.0203006
|
0.0191004
|
0.0139564
|
0.0186085
|
0.0197294
|
0.0183705
|
0.0170475
|
0.0162025
|
0.0191570
|
0.0139038
|
0.0383326
|
0.0163557
|
0.0212831
|
0.0170844
|
0.0161007
|
0.0158048
|
0.0181393
|
0.0164447
|
0.0223158
|
0.0234667
|
0.0228146
|
0.0272047
|
0.0111004
|
0.0123096
|
0.0151427
|
0.0132235
|
0.0152433
|
0.0138511
|
0.0556374
|
0.0199022
|
0.0222268
|
0.0169242
|
0.0238919
|
0.0146407
|
0.0211511
|
0.0186201
|
0.0218679
|
0.0201653
|
0.0170753
|
0.0113253
|
0.0177695
|
0.0471473
|
0.0179333
|
0.0484542
|
0.0147806
|
0.0203283
|
0.0155416
|
0.0146268
|
0.0223290
|
0.0121748
|
0.0143638
|
0.0117201
|
0.0162348
|
0.0125307
|
0.0147498
|
0.0165230
|
0.0160557
|
0.0162442
|
0.0166882
|
0.0133328
|
0.0181597
|
0.0188186
|
|
2006
|
0.0017836
|
0.0133105
|
0.0126963
|
0.0121799
|
0.0056732
|
0.0128865
|
0.0128617
|
0.0192405
|
0.0085247
|
0.0194073
|
0.0214288
|
0.0178261
|
0.0218086
|
0.0146698
|
0.0133973
|
0.0165100
|
0.0224227
|
0.0185260
|
0.0171423
|
0.0219887
|
0.0103805
|
0.0141519
|
0.0170704
|
0.0172177
|
0.0107291
|
0.0210743
|
0.0314342
|
0.0170191
|
0.0120964
|
0.0122517
|
0.0197336
|
0.0117741
|
0.0214656
|
0.0172082
|
0.0168556
|
0.0149958
|
0.0125745
|
0.0203075
|
0.0137239
|
0.0156932
|
0.0160762
|
0.0227288
|
0.0109344
|
0.0110937
|
0.0157570
|
0.0146219
|
0.0133488
|
0.0233737
|
0.0139046
|
0.0160935
|
0.0103691
|
0.0292026
|
0.0226249
|
0.0198392
|
0.0202680
|
0.0160238
|
0.0198589
|
0.0236310
|
0.0206717
|
0.0137703
|
0.0169610
|
0.0182756
|
0.0169727
|
0.0189445
|
0.0128180
|
0.0198767
|
0.0183600
|
0.0210218
|
0.0292503
|
0.0187400
|
0.0235504
|
0.0141279
|
0.0147723
|
0.0152524
|
0.0158729
|
0.0159647
|
0.0194226
|
0.0165176
|
0.0204683
|
0.0161458
|
0.0139257
|
0.0226606
|
0.0206507
|
0.0262298
|
0.0107873
|
0.0109559
|
0.0139613
|
0.0143093
|
0.0159311
|
0.0149718
|
0.0173024
|
0.0270698
|
0.0163671
|
0.0152428
|
0.0139846
|
0.0228078
|
0.0200600
|
0.0179317
|
0.0182849
|
0.0157760
|
0.0144814
|
0.0130909
|
0.0204157
|
0.0194729
|
0.0174835
|
0.0197170
|
0.0233823
|
0.0206956
|
0.0187283
|
0.0133593
|
0.0141329
|
0.0138545
|
0.0139974
|
0.0106824
|
0.0196513
|
0.0142849
|
0.0113885
|
0.0162694
|
0.0165656
|
0.0185633
|
0.0117561
|
0.0126269
|
0.0149671
|
0.0210101
|
|
2007
|
0.0018176
|
0.0178110
|
0.0155539
|
0.0177216
|
0.0055292
|
0.0159703
|
0.0114532
|
0.0127887
|
0.0124701
|
0.0197992
|
0.0199178
|
0.0132664
|
0.0203481
|
0.0163025
|
0.0168781
|
0.0140200
|
0.0152750
|
0.0200049
|
0.0192564
|
0.0178255
|
0.0193554
|
0.0165889
|
0.0187292
|
0.0138014
|
0.0100102
|
0.0156124
|
0.0162982
|
0.0188478
|
0.0232742
|
0.0132711
|
0.0145751
|
0.0207499
|
0.0191592
|
0.0242813
|
0.0115969
|
0.0142268
|
0.0162113
|
0.0145708
|
0.0178919
|
0.0236182
|
0.0213679
|
0.0176726
|
0.0127846
|
0.0135358
|
0.0158653
|
0.0162975
|
0.0148817
|
0.0181833
|
0.0155489
|
0.0144510
|
0.0105490
|
0.0189432
|
0.0239475
|
0.0160823
|
0.0260911
|
0.0161244
|
0.0199805
|
0.0165847
|
0.0193257
|
0.0122254
|
0.0213440
|
0.0168714
|
0.0156959
|
0.0172282
|
0.0150172
|
0.0175416
|
0.0168529
|
0.0282194
|
0.0235131
|
0.0193753
|
0.0188225
|
0.0146215
|
0.0178351
|
0.0177767
|
0.0131599
|
0.0233453
|
0.0156154
|
0.0156223
|
0.0128967
|
0.0139008
|
0.0155677
|
0.0233429
|
0.0235193
|
0.0246965
|
0.0099134
|
0.0101872
|
0.0155945
|
0.0138229
|
0.0167098
|
0.0131638
|
0.0125928
|
0.0203625
|
0.0185416
|
0.0196394
|
0.0225693
|
0.0273695
|
0.0198507
|
0.0167037
|
0.0167708
|
0.0161851
|
0.0181746
|
0.0126937
|
0.0172015
|
0.0261073
|
0.0186278
|
0.0186976
|
0.0210426
|
0.0164886
|
0.0205648
|
0.0159769
|
0.0158601
|
0.0179710
|
0.0145248
|
0.0138645
|
0.0184385
|
0.0126255
|
0.0114967
|
0.0166584
|
0.0143382
|
0.0201939
|
0.0121111
|
0.0128132
|
0.0179762
|
0.0180677
|
|
2008
|
0.0018963
|
0.0145677
|
0.0122108
|
0.0200207
|
0.0059146
|
0.0388645
|
0.0170452
|
0.0180956
|
0.0102222
|
0.0213069
|
0.0168144
|
0.0158875
|
0.0232951
|
0.0170458
|
0.0145551
|
0.0133535
|
0.0177987
|
0.0172271
|
0.0177944
|
0.0192891
|
0.0098822
|
0.0169722
|
0.0162943
|
0.0213379
|
0.0098475
|
0.0227281
|
0.0130717
|
0.0176854
|
0.0144059
|
0.0126241
|
0.0163136
|
0.0148684
|
0.0174668
|
0.0266496
|
0.0100592
|
0.0130684
|
0.0143893
|
0.0186322
|
0.0159844
|
0.0177502
|
0.0215654
|
0.0178491
|
0.0120430
|
0.0154158
|
0.0169954
|
0.0163279
|
0.0140252
|
0.0219853
|
0.0149294
|
0.0142883
|
0.0098644
|
0.0209132
|
0.0205174
|
0.0151135
|
0.0172710
|
0.0249886
|
0.0190884
|
0.0177437
|
0.0187737
|
0.0143080
|
0.0196359
|
0.0193136
|
0.0173545
|
0.0194474
|
0.0112568
|
0.0161303
|
0.0166933
|
0.0210406
|
0.0164132
|
0.0192394
|
0.0285649
|
0.0140990
|
0.0161670
|
0.0141693
|
0.0160097
|
0.0219125
|
0.0167609
|
0.0162293
|
0.0138038
|
0.0175661
|
0.0175619
|
0.0241800
|
0.0288209
|
0.0326155
|
0.0103309
|
0.0116211
|
0.0132699
|
0.0135576
|
0.0192003
|
0.0136387
|
0.0139071
|
0.0159471
|
0.0136790
|
0.0209835
|
0.0192509
|
0.0189800
|
0.0240224
|
0.0202535
|
0.0184905
|
0.0172995
|
0.0243045
|
0.0151443
|
0.0231631
|
0.0166006
|
0.0144070
|
0.0181735
|
0.0171336
|
0.0180669
|
0.0155925
|
0.0128694
|
0.0184303
|
0.0185989
|
0.0206524
|
0.0153523
|
0.0197885
|
0.0115370
|
0.0126875
|
0.0175497
|
0.0224126
|
0.0192054
|
0.0134605
|
0.0118216
|
0.0176488
|
0.0184359
|
|
2009
|
0.0018881
|
0.0164704
|
0.0117798
|
0.0163658
|
0.0054818
|
0.0123273
|
0.0141152
|
0.0145098
|
0.0099637
|
0.0196881
|
0.0242188
|
0.0164914
|
0.0173866
|
0.0153258
|
0.0211108
|
0.0364109
|
0.0157895
|
0.0178148
|
0.0195899
|
0.0182115
|
0.0122914
|
0.0126675
|
0.0155173
|
0.0157439
|
0.0098048
|
0.0164661
|
0.0137172
|
0.0192834
|
0.0192904
|
0.0131084
|
0.0171653
|
0.0149943
|
0.0277484
|
0.0149983
|
0.0131673
|
0.0121487
|
0.0119900
|
0.0133989
|
0.0159186
|
0.0173019
|
0.0174420
|
0.0176439
|
0.0128212
|
0.0153025
|
0.0157236
|
0.0143817
|
0.0135622
|
0.0169026
|
0.0156604
|
0.0127228
|
0.0106239
|
0.0191757
|
0.0173287
|
0.0156854
|
0.0155559
|
0.0213106
|
0.0186876
|
0.0199278
|
0.0179663
|
0.0130527
|
0.0157394
|
0.0167455
|
0.0191595
|
0.0191889
|
0.0132255
|
0.0154090
|
0.0157848
|
0.0258662
|
0.0165854
|
0.0172138
|
0.0332560
|
0.0138671
|
0.0181332
|
0.0156890
|
0.0173253
|
0.0177152
|
0.0213270
|
0.0152334
|
0.0135155
|
0.0144681
|
0.0167954
|
0.0212390
|
0.0229635
|
0.0335094
|
0.0102402
|
0.0106336
|
0.0154183
|
0.0138263
|
0.0167722
|
0.0164421
|
0.0150383
|
0.0183256
|
0.0178026
|
0.0234656
|
0.0203709
|
0.0151538
|
0.0163195
|
0.0187075
|
0.0208504
|
0.0264067
|
0.0173580
|
0.0128906
|
0.0148653
|
0.0163681
|
0.0170934
|
0.0158339
|
0.0181031
|
0.0151026
|
0.0144242
|
0.0112160
|
0.0153647
|
0.0133758
|
0.0135501
|
0.0131050
|
0.0164199
|
0.0120369
|
0.0129608
|
0.0162940
|
0.0273469
|
0.0165940
|
0.0132888
|
0.0136242
|
0.0150656
|
0.0170491
|
|
2010
|
0.0017068
|
0.0298197
|
0.0129566
|
0.0157757
|
0.0050337
|
0.0154303
|
0.0130069
|
0.0217572
|
0.0102405
|
0.0158276
|
0.0146724
|
0.0121507
|
0.0197965
|
0.0192935
|
0.0209300
|
0.0167425
|
0.0209116
|
0.0156975
|
0.0207876
|
0.0154869
|
0.0133512
|
0.0146863
|
0.0141544
|
0.0168153
|
0.0121504
|
0.0164059
|
0.0132929
|
0.0172786
|
0.0158806
|
0.0138445
|
0.0157280
|
0.0130249
|
0.0158501
|
0.0166832
|
0.0134684
|
0.0127909
|
0.0111010
|
0.0191990
|
0.0195194
|
0.0189320
|
0.0138131
|
0.0176758
|
0.0107342
|
0.0133447
|
0.0164450
|
0.0156944
|
0.0125689
|
0.0138285
|
0.0134626
|
0.0126080
|
0.0101072
|
0.0170001
|
0.0184184
|
0.0222170
|
0.0208966
|
0.0181618
|
0.0163495
|
0.0183351
|
0.0187660
|
0.0141950
|
0.0170246
|
0.0225656
|
0.0172557
|
0.0176162
|
0.0133610
|
0.0190346
|
0.0176072
|
0.0208682
|
0.0160562
|
0.0162495
|
0.0188831
|
0.0147502
|
0.0176767
|
0.0159070
|
0.0136060
|
0.0226927
|
0.0140894
|
0.0176350
|
0.0151990
|
0.0209363
|
0.0179737
|
0.0194683
|
0.0193889
|
0.0233505
|
0.0101891
|
0.0113666
|
0.0123611
|
0.0124522
|
0.0200602
|
0.0131101
|
0.0211990
|
0.0165844
|
0.0157961
|
0.0127572
|
0.0156158
|
0.0159196
|
0.0171976
|
0.0199796
|
0.0173745
|
0.0217201
|
0.0285399
|
0.0150280
|
0.0143962
|
0.0173200
|
0.0234951
|
0.0162514
|
0.0176840
|
0.0141946
|
0.0166110
|
0.0188692
|
0.0166903
|
0.0122349
|
0.0185361
|
0.0133715
|
0.0151953
|
0.0156828
|
0.0117900
|
0.0294599
|
0.0261987
|
0.0195276
|
0.0141825
|
0.0129592
|
0.0163047
|
0.0185749
|
|
2011
|
0.0019164
|
0.0140134
|
0.0166227
|
0.0143363
|
0.0052844
|
0.0134029
|
0.0168974
|
0.0128880
|
0.0112419
|
0.0175372
|
0.0301080
|
0.0252235
|
0.0166095
|
0.0193399
|
0.0161668
|
0.0170327
|
0.0229013
|
0.0162390
|
0.0172850
|
0.0159129
|
0.0113900
|
0.0127554
|
0.0133912
|
0.0129677
|
0.0132941
|
0.0138306
|
0.0150158
|
0.0230066
|
0.0169656
|
0.0170627
|
0.0169432
|
0.0135413
|
0.0204161
|
0.0133614
|
0.0130327
|
0.0127057
|
0.0124763
|
0.0183687
|
0.0143040
|
0.0255233
|
0.0231400
|
0.0188326
|
0.0108112
|
0.0127323
|
0.0153385
|
0.0149905
|
0.0121570
|
0.0124830
|
0.0131338
|
0.0148853
|
0.0095979
|
0.0169239
|
0.0195261
|
0.0214915
|
0.0145235
|
0.0247242
|
0.0190026
|
0.0201698
|
0.0189198
|
0.0121877
|
0.0214295
|
0.0206310
|
0.0152745
|
0.0169683
|
0.0140381
|
0.0166458
|
0.0174349
|
0.0254926
|
0.0158453
|
0.0138040
|
0.0252312
|
0.0155575
|
0.0186988
|
0.0154025
|
0.0147257
|
0.0160486
|
0.0149973
|
0.0168870
|
0.0138392
|
0.0200359
|
0.0203156
|
0.0241101
|
0.0195894
|
0.0222592
|
0.0127379
|
0.0168409
|
0.0147087
|
0.0188096
|
0.0187140
|
0.0157815
|
0.0172956
|
0.0164608
|
0.0134741
|
0.0185631
|
0.0236864
|
0.0198231
|
0.0166819
|
0.0170651
|
0.0183828
|
0.0166776
|
0.0228612
|
0.0120438
|
0.0176515
|
0.0248079
|
0.0163310
|
0.0177293
|
0.0140606
|
0.0179787
|
0.0180421
|
0.0290263
|
0.0147911
|
0.0140810
|
0.0192727
|
0.0155962
|
0.0211441
|
0.0118280
|
0.0154857
|
0.0181382
|
0.0158270
|
0.0175595
|
0.0150592
|
0.0125159
|
0.0236032
|
0.0210650
|
|
2012
|
0.0018272
|
0.0194630
|
0.0136462
|
0.0139165
|
0.0058571
|
0.0124627
|
0.0170971
|
0.0130210
|
0.0107105
|
0.0206124
|
0.0180192
|
0.0207347
|
0.0148290
|
0.0160351
|
0.0138579
|
0.0225667
|
0.0181017
|
0.0214591
|
0.0267701
|
0.0263126
|
0.0096611
|
0.0132412
|
0.0148827
|
0.0122929
|
0.0108224
|
0.0201482
|
0.0174376
|
0.0235262
|
0.0170835
|
0.0147555
|
0.0176455
|
0.0153866
|
0.0214053
|
0.0176271
|
0.0105515
|
0.0238032
|
0.0163295
|
0.0173164
|
0.0185386
|
0.0160682
|
0.0194433
|
0.0191133
|
0.0108079
|
0.0123638
|
0.0150822
|
0.0168186
|
0.0134515
|
0.0148180
|
0.0126585
|
0.0150863
|
0.0102524
|
0.0171525
|
0.0166875
|
0.0183180
|
0.0140418
|
0.0177036
|
0.0190367
|
0.0169930
|
0.0171500
|
0.0122577
|
0.0177446
|
0.0185527
|
0.0159402
|
0.0225073
|
0.0133565
|
0.0180375
|
0.0160359
|
0.0207969
|
0.0159234
|
0.0150656
|
0.0213971
|
0.0143810
|
0.0194675
|
0.0172838
|
0.0152453
|
0.0152949
|
0.0164391
|
0.0187638
|
0.0151748
|
0.0162184
|
0.0160128
|
0.0284752
|
0.0225127
|
0.0217750
|
0.0145574
|
0.0159215
|
0.0154951
|
0.0197223
|
0.0202935
|
0.0134254
|
0.0151804
|
0.0184796
|
0.0232326
|
0.0146916
|
0.0147699
|
0.0167475
|
0.0151818
|
0.0183564
|
0.0200107
|
0.0254839
|
0.0150735
|
0.0115169
|
0.0132894
|
0.0176459
|
0.0191910
|
0.0142200
|
0.0169994
|
0.0205811
|
0.0165242
|
0.0127733
|
0.0178994
|
0.0136812
|
0.0140651
|
0.0121099
|
0.0149646
|
0.0146400
|
0.0109100
|
0.0177340
|
0.0175814
|
0.0189778
|
0.0123056
|
0.0141723
|
0.0153174
|
0.0232028
|
|
2013
|
0.0020184
|
0.0248648
|
0.0195886
|
0.0181225
|
0.0056264
|
0.0154207
|
0.0167807
|
0.0158676
|
0.0120778
|
0.0154135
|
0.0147087
|
0.0306826
|
0.0165830
|
0.0163506
|
0.0236167
|
0.0182007
|
0.0230355
|
0.0183740
|
0.0178472
|
0.0199312
|
0.0111390
|
0.0125017
|
0.0165098
|
0.0163435
|
0.0161022
|
0.0204975
|
0.0142237
|
0.0209686
|
0.0154148
|
0.0129757
|
0.0152467
|
0.0155131
|
0.0204856
|
0.0225808
|
0.0148066
|
0.0144075
|
0.0122518
|
0.0149855
|
0.0157919
|
0.0174821
|
0.0215020
|
0.0303917
|
0.0115877
|
0.0124316
|
0.0166217
|
0.0155339
|
0.0141578
|
0.0156298
|
0.0155135
|
0.0150010
|
0.0142320
|
0.0185694
|
0.0174141
|
0.0164452
|
0.0175378
|
0.0192773
|
0.0191671
|
0.0218088
|
0.0226314
|
0.0175352
|
0.0165059
|
0.0169429
|
0.0160859
|
0.0180336
|
0.0149077
|
0.0173369
|
0.0200937
|
0.0155508
|
0.0227826
|
0.0202657
|
0.0344428
|
0.0146928
|
0.0254509
|
0.0156585
|
0.0144125
|
0.0311540
|
0.0153980
|
0.0138382
|
0.0144787
|
0.0169963
|
0.0145966
|
0.0241504
|
0.0234971
|
0.0264924
|
0.0135106
|
0.0156685
|
0.0151734
|
0.0327888
|
0.0160960
|
0.0123988
|
0.0160450
|
0.0206741
|
0.0165973
|
0.0172905
|
0.0171626
|
0.0183649
|
0.0158383
|
0.0201835
|
0.0184031
|
0.0203090
|
0.0202561
|
0.0151428
|
0.0139412
|
0.0251585
|
0.0204326
|
0.0144804
|
0.0149199
|
0.0164365
|
0.0172767
|
0.0162550
|
0.0288167
|
0.0135497
|
0.0349291
|
0.0167164
|
0.0170091
|
0.0156208
|
0.0108784
|
0.0221193
|
0.0172276
|
0.0170259
|
0.0180402
|
0.0118343
|
0.0240334
|
0.0296208
|
|
2014
|
0.0018606
|
0.0174487
|
0.0126332
|
0.0368492
|
0.0066336
|
0.0187851
|
0.0133519
|
0.0162365
|
0.0109183
|
0.0179245
|
0.0384971
|
0.0148019
|
0.0190165
|
0.0163964
|
0.0164411
|
0.0165087
|
0.0201865
|
0.0211353
|
0.0191500
|
0.0169050
|
0.0208208
|
0.0130561
|
0.0201932
|
0.0158432
|
0.0137252
|
0.0251030
|
0.0183152
|
0.0200545
|
0.0171440
|
0.0229892
|
0.0189307
|
0.0199175
|
0.0206909
|
0.0173692
|
0.0194756
|
0.0185587
|
0.0218313
|
0.0143319
|
0.0165006
|
0.0176981
|
0.0191404
|
0.0206193
|
0.0129281
|
0.0136746
|
0.0144359
|
0.0168093
|
0.0145721
|
0.0144851
|
0.0137256
|
0.0123909
|
0.0110516
|
0.0192427
|
0.0218912
|
0.0181208
|
0.0169400
|
0.0237492
|
0.0201065
|
0.0231337
|
0.0194601
|
0.0119033
|
0.0162216
|
0.0172970
|
0.0173384
|
0.0206387
|
0.0146217
|
0.0164729
|
0.0169540
|
0.0196345
|
0.0187895
|
0.0162129
|
0.0246443
|
0.0150957
|
0.0204853
|
0.0143657
|
0.0153874
|
0.0180909
|
0.0153712
|
0.0154055
|
0.0142529
|
0.0177176
|
0.0191416
|
0.0243764
|
0.0181589
|
0.0224744
|
0.0150885
|
0.0154656
|
0.0162124
|
0.0197584
|
0.0184806
|
0.0143392
|
0.0188115
|
0.0199844
|
0.0171625
|
0.0134483
|
0.0164582
|
0.0142956
|
0.0185909
|
0.0165162
|
0.0161263
|
0.0160401
|
0.0150498
|
0.0124083
|
0.0175872
|
0.0272313
|
0.0172610
|
0.0146296
|
0.0150163
|
0.0200566
|
0.0143774
|
0.0162469
|
0.0181822
|
0.0155327
|
0.0174741
|
0.0115189
|
0.0172922
|
0.0128267
|
0.0107892
|
0.0206352
|
0.0206873
|
0.0205700
|
0.0166453
|
0.0104733
|
0.0332046
|
0.0274901
|
|
2015
|
0.0019800
|
0.0175567
|
0.0145814
|
0.0213266
|
0.0062891
|
0.0162082
|
0.0135997
|
0.0227305
|
0.0119545
|
0.0191317
|
0.0190811
|
0.0163183
|
0.0136947
|
0.0187347
|
0.0154204
|
0.0139237
|
0.0211995
|
0.0207269
|
0.0211158
|
0.0213190
|
0.0147078
|
0.0146155
|
0.0152098
|
0.0174367
|
0.0167097
|
0.0153003
|
0.0184557
|
0.0197580
|
0.0166978
|
0.0170033
|
0.0203306
|
0.0197151
|
0.0198764
|
0.0195997
|
0.0103109
|
0.0120018
|
0.0136846
|
0.0163070
|
0.0166184
|
0.0243140
|
0.0152637
|
0.0286901
|
0.0125310
|
0.0132557
|
0.0171474
|
0.0176867
|
0.0142638
|
0.0163306
|
0.0138370
|
0.0134588
|
0.0104171
|
0.0151932
|
0.0189526
|
0.0205249
|
0.0151083
|
0.0194099
|
0.0181278
|
0.0198761
|
0.0226958
|
0.0122132
|
0.0176790
|
0.0205079
|
0.0167418
|
0.0180501
|
0.0133549
|
0.0203829
|
0.0241475
|
0.0217316
|
0.0234107
|
0.0191052
|
0.0226521
|
0.0152086
|
0.0229007
|
0.0216332
|
0.0160847
|
0.0266478
|
0.0166366
|
0.0274327
|
0.0187867
|
0.0234830
|
0.0126816
|
0.0225901
|
0.0191573
|
0.0217177
|
0.0132401
|
0.0158182
|
0.0168694
|
0.0253595
|
0.0143062
|
0.0132667
|
0.0142541
|
0.0190045
|
0.0168220
|
0.0164356
|
0.0187590
|
0.0210565
|
0.0153516
|
0.0183897
|
0.0162744
|
0.0199352
|
0.0156917
|
0.0155980
|
0.0139153
|
0.0226772
|
0.0239589
|
0.0162546
|
0.0163307
|
0.0152695
|
0.0155162
|
0.0148457
|
0.0169921
|
0.0179790
|
0.0164487
|
0.0130553
|
0.0157326
|
0.0110936
|
0.0111049
|
0.0191489
|
0.0246577
|
0.0190065
|
0.0188051
|
0.0115969
|
0.0162089
|
0.0190055
|
|
2016
|
0.0018836
|
0.0196946
|
0.0167830
|
0.0142223
|
0.0064003
|
0.0160442
|
0.0152700
|
0.0204674
|
0.0102087
|
0.0167282
|
0.0262619
|
0.0115578
|
0.0191541
|
0.0167891
|
0.0153816
|
0.0171752
|
0.0195951
|
0.0150645
|
0.0200915
|
0.0212392
|
0.0115388
|
0.0136574
|
0.0206543
|
0.0150975
|
0.0099506
|
0.0210910
|
0.0150116
|
0.0179548
|
0.0180312
|
0.0140989
|
0.0205677
|
0.0139610
|
0.0169151
|
0.0157806
|
0.0114181
|
0.0114462
|
0.0127497
|
0.0165839
|
0.0165259
|
0.0169695
|
0.0234811
|
0.0163332
|
0.0111086
|
0.0125778
|
0.0138459
|
0.0132392
|
0.0133137
|
0.0177866
|
0.0135395
|
0.0137289
|
0.0093641
|
0.0157353
|
0.0186747
|
0.0162953
|
0.0179346
|
0.0192564
|
0.0177885
|
0.0187331
|
0.0190677
|
0.0138022
|
0.0166050
|
0.0223305
|
0.0194962
|
0.0184319
|
0.0152830
|
0.0180699
|
0.0258604
|
0.0188134
|
0.0200946
|
0.0216455
|
0.0217688
|
0.0169541
|
0.0176126
|
0.0169102
|
0.0133926
|
0.0239139
|
0.0153528
|
0.0185429
|
0.0141947
|
0.0227351
|
0.0155143
|
0.0257278
|
0.0247860
|
0.0272350
|
0.0140523
|
0.0126128
|
0.0171493
|
0.0176219
|
0.0196621
|
0.0130227
|
0.0168606
|
0.0214681
|
0.0167428
|
0.0143404
|
0.0177096
|
0.0193779
|
0.0173558
|
0.0152528
|
0.0225899
|
0.0316709
|
0.0184340
|
0.0119189
|
0.0214520
|
0.0198478
|
0.0165262
|
0.0135157
|
0.0184907
|
0.0146659
|
0.0142120
|
0.0137986
|
0.0142288
|
0.0153636
|
0.0166900
|
0.0119936
|
0.0213908
|
0.0118452
|
0.0128473
|
0.0214489
|
0.0169621
|
0.0163393
|
0.0111158
|
0.0122864
|
0.0219587
|
0.0172603
|
|
2017
|
0.0018453
|
0.0181880
|
0.0189387
|
0.0157781
|
0.0064242
|
0.0150502
|
0.0171453
|
0.0188392
|
0.0099350
|
0.0173480
|
0.0315282
|
0.0190025
|
0.0167713
|
0.0171310
|
0.0193409
|
0.0181427
|
0.0201384
|
0.0190069
|
0.0198419
|
0.0230713
|
0.0139650
|
0.0123042
|
0.0133420
|
0.0130474
|
0.0127354
|
0.0141872
|
0.0201948
|
0.0194365
|
0.0198306
|
0.0149871
|
0.0192901
|
0.0143214
|
0.0202948
|
0.0224990
|
0.0185243
|
0.0135326
|
0.0140307
|
0.0150572
|
0.0180517
|
0.0209387
|
0.0159886
|
0.0187857
|
0.0125648
|
0.0122986
|
0.0158986
|
0.0136498
|
0.0126339
|
0.0140243
|
0.0130785
|
0.0141034
|
0.0101701
|
0.0170798
|
0.0239673
|
0.0174539
|
0.0174689
|
0.0159316
|
0.0192221
|
0.0160346
|
0.0191978
|
0.0145635
|
0.0184420
|
0.0165089
|
0.0196015
|
0.0233686
|
0.0150138
|
0.0163335
|
0.0237822
|
0.0174225
|
0.0203458
|
0.0191222
|
0.0214854
|
0.0200497
|
0.0333082
|
0.0157768
|
0.0228031
|
0.0170078
|
0.0228939
|
0.0191427
|
0.0134849
|
0.0144512
|
0.0135383
|
0.0203602
|
0.0256104
|
0.0255129
|
0.0130561
|
0.0151010
|
0.0175019
|
0.0181728
|
0.0160692
|
0.0145602
|
0.0181656
|
0.0199084
|
0.0179320
|
0.0151744
|
0.0175430
|
0.0164211
|
0.0162343
|
0.0173190
|
0.0223001
|
0.0172437
|
0.0168982
|
0.0138989
|
0.0178868
|
0.0242438
|
0.0212696
|
0.0160260
|
0.0175847
|
0.0163205
|
0.0155250
|
0.0138907
|
0.0231183
|
0.0134335
|
0.0169795
|
0.0179295
|
0.0188716
|
0.0175076
|
0.0116513
|
0.0275630
|
0.0158968
|
0.0155638
|
0.0144154
|
0.0130608
|
0.0237875
|
0.0208151
|
|
2018
|
0.0018203
|
0.0138738
|
0.0153167
|
0.0198062
|
0.0060670
|
0.0147451
|
0.0160230
|
0.0141737
|
0.0108633
|
0.0166248
|
0.0176833
|
0.0165586
|
0.0178164
|
0.0145937
|
0.0205783
|
0.0258561
|
0.0238199
|
0.0188266
|
0.0225767
|
0.0158492
|
0.0164105
|
0.0135319
|
0.0126448
|
0.0182816
|
0.0115635
|
0.0313536
|
0.0142732
|
0.0168300
|
0.0286952
|
0.0138433
|
0.0262866
|
0.0137313
|
0.0185549
|
0.0289090
|
0.0117052
|
0.0157383
|
0.0124964
|
0.0181355
|
0.0143343
|
0.0179853
|
0.0167286
|
0.0177028
|
0.0129251
|
0.0115203
|
0.0180895
|
0.0147850
|
0.0132889
|
0.0140845
|
0.0148076
|
0.0132308
|
0.0106760
|
0.0188417
|
0.0197552
|
0.0213263
|
0.0176746
|
0.0175219
|
0.0196401
|
0.0199235
|
0.0203411
|
0.0129653
|
0.0229449
|
0.0179962
|
0.0184565
|
0.0160138
|
0.0146665
|
0.0170909
|
0.0215947
|
0.0300334
|
0.0169069
|
0.0202355
|
0.0206466
|
0.0226918
|
0.0184451
|
0.0155559
|
0.0234197
|
0.0207126
|
0.0146110
|
0.0170458
|
0.0235550
|
0.0151331
|
0.0150349
|
0.0234127
|
0.0207097
|
0.0186131
|
0.0122074
|
0.0152877
|
0.0143937
|
0.0188286
|
0.0230298
|
0.0136316
|
0.0194448
|
0.0162981
|
0.0174546
|
0.0183601
|
0.0190809
|
0.0187587
|
0.0156767
|
0.0182353
|
0.0159320
|
0.0223281
|
0.0174714
|
0.0116555
|
0.0264200
|
0.0257446
|
0.0217521
|
0.0149332
|
0.0170019
|
0.0173319
|
0.0160427
|
0.0108632
|
0.0160432
|
0.0123576
|
0.0167955
|
0.0142495
|
0.0146391
|
0.0149241
|
0.0107783
|
0.0173894
|
0.0181132
|
0.0160079
|
0.0206038
|
0.0119347
|
0.0162819
|
0.0200100
|
Gini standard errors for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
Pennsylvania (42)
|
854
|
855
|
856
|
857
|
858
|
859
|
860
|
861
|
862
|
863
|
864
|
865
|
866
|
867
|
868
|
869
|
870
|
871
|
872
|
873
|
874
|
875
|
876
|
877
|
878
|
879
|
880
|
881
|
882
|
883
|
884
|
885
|
886
|
887
|
888
|
889
|
890
|
891
|
892
|
893
|
894
|
895
|
896
|
897
|
898
|
899
|
900
|
901
|
902
|
903
|
904
|
905
|
906
|
907
|
908
|
|
2005
|
0.0020278
|
0.0157429
|
0.0146396
|
0.0118010
|
0.0161626
|
0.0138092
|
0.0212231
|
0.0213315
|
0.0138391
|
0.0099873
|
0.0101476
|
0.0134801
|
0.0188296
|
0.0172786
|
0.0154405
|
0.0180477
|
0.0132321
|
0.0138956
|
0.0091681
|
0.0106482
|
0.0119087
|
0.0134793
|
0.0171910
|
0.0168944
|
0.0181710
|
0.0127583
|
0.0158584
|
0.0186185
|
0.0141609
|
0.0194747
|
0.0347526
|
0.0175199
|
0.0213998
|
0.0095097
|
0.0297539
|
0.0089961
|
0.0067408
|
0.0176342
|
0.0114210
|
0.0192312
|
0.0184496
|
0.0277919
|
0.0215439
|
0.0182736
|
0.0236593
|
0.0243881
|
0.0174471
|
0.0110753
|
0.0081322
|
0.0121233
|
0.0102460
|
0.0197946
|
0.0138347
|
0.0184188
|
0.0133285
|
0.0126324
|
|
2006
|
0.0018820
|
0.0151151
|
0.0146525
|
0.0099576
|
0.0172773
|
0.0218894
|
0.0179906
|
0.0147508
|
0.0142456
|
0.0102616
|
0.0104806
|
0.0137445
|
0.0190590
|
0.0169507
|
0.0177913
|
0.0153269
|
0.0127817
|
0.0164675
|
0.0077126
|
0.0118116
|
0.0160004
|
0.0104843
|
0.0160457
|
0.0128722
|
0.0184293
|
0.0094885
|
0.0139500
|
0.0165512
|
0.0109706
|
0.0157062
|
0.0120666
|
0.0117331
|
0.0176610
|
0.0085295
|
0.0226002
|
0.0085449
|
0.0068962
|
0.0165945
|
0.0108637
|
0.0162224
|
0.0183565
|
0.0239265
|
0.0178424
|
0.0174499
|
0.0202002
|
0.0209555
|
0.0154807
|
0.0089388
|
0.0078558
|
0.0090860
|
0.0107972
|
0.0142009
|
0.0138852
|
0.0216980
|
0.0139000
|
0.0119798
|
|
2007
|
0.0020100
|
0.0148680
|
0.0132534
|
0.0108241
|
0.0145046
|
0.0145295
|
0.0220509
|
0.0176038
|
0.0137194
|
0.0098813
|
0.0099967
|
0.0238844
|
0.0184530
|
0.0159568
|
0.0144649
|
0.0162240
|
0.0138276
|
0.0203107
|
0.0092782
|
0.0114792
|
0.0202842
|
0.0116984
|
0.0175985
|
0.0140986
|
0.0207946
|
0.0091518
|
0.0119753
|
0.0202416
|
0.0160201
|
0.0160592
|
0.0154747
|
0.0106594
|
0.0148973
|
0.0092608
|
0.0267972
|
0.0083499
|
0.0073541
|
0.0200087
|
0.0124334
|
0.0195306
|
0.0183981
|
0.0184799
|
0.0175783
|
0.0168920
|
0.0227086
|
0.0184312
|
0.0176981
|
0.0102071
|
0.0088317
|
0.0097750
|
0.0123239
|
0.0174957
|
0.0158778
|
0.0215211
|
0.0122023
|
0.0144284
|
|
2008
|
0.0019164
|
0.0115301
|
0.0104312
|
0.0106408
|
0.0157079
|
0.0136711
|
0.0134906
|
0.0206226
|
0.0168218
|
0.0115922
|
0.0109296
|
0.0146815
|
0.0180331
|
0.0150613
|
0.0204716
|
0.0142830
|
0.0137911
|
0.0162604
|
0.0091837
|
0.0111154
|
0.0136794
|
0.0196608
|
0.0209549
|
0.0184584
|
0.0183687
|
0.0088704
|
0.0143103
|
0.0150820
|
0.0135282
|
0.0144528
|
0.0170820
|
0.0112470
|
0.0173044
|
0.0085375
|
0.0195190
|
0.0079152
|
0.0071638
|
0.0144562
|
0.0105320
|
0.0160048
|
0.0190478
|
0.0247033
|
0.0211077
|
0.0186200
|
0.0191685
|
0.0169750
|
0.0142688
|
0.0116203
|
0.0079621
|
0.0103364
|
0.0111786
|
0.0174376
|
0.0138240
|
0.0170703
|
0.0141141
|
0.0107179
|
|
2009
|
0.0019900
|
0.0113524
|
0.0166067
|
0.0109162
|
0.0112860
|
0.0133147
|
0.0224203
|
0.0188414
|
0.0168831
|
0.0125745
|
0.0117409
|
0.0222566
|
0.0182268
|
0.0156194
|
0.0135721
|
0.0132005
|
0.0135732
|
0.0145997
|
0.0086406
|
0.0114021
|
0.0127952
|
0.0146991
|
0.0185203
|
0.0139181
|
0.0153476
|
0.0116036
|
0.0119421
|
0.0155671
|
0.0131020
|
0.0182118
|
0.0154041
|
0.0094204
|
0.0155851
|
0.0090783
|
0.0304435
|
0.0087082
|
0.0081245
|
0.0146357
|
0.0104580
|
0.0170605
|
0.0234086
|
0.0234243
|
0.0184392
|
0.0180539
|
0.0203526
|
0.0215623
|
0.0135970
|
0.0094252
|
0.0080398
|
0.0098091
|
0.0106578
|
0.0224332
|
0.0204471
|
0.0156744
|
0.0159856
|
0.0104933
|
|
2010
|
0.0018823
|
0.0116734
|
0.0186489
|
0.0083721
|
0.0144671
|
0.0144403
|
0.0160859
|
0.0248337
|
0.0138514
|
0.0102187
|
0.0108052
|
0.0142147
|
0.0144067
|
0.0146852
|
0.0133720
|
0.0136381
|
0.0102211
|
0.0169657
|
0.0084406
|
0.0114682
|
0.0139908
|
0.0150469
|
0.0189612
|
0.0133604
|
0.0162694
|
0.0103660
|
0.0134174
|
0.0143057
|
0.0124806
|
0.0167102
|
0.0142172
|
0.0111780
|
0.0165444
|
0.0096557
|
0.0188550
|
0.0088462
|
0.0066434
|
0.0153805
|
0.0115956
|
0.0230502
|
0.0178121
|
0.0195032
|
0.0192792
|
0.0163842
|
0.0212690
|
0.0192608
|
0.0136478
|
0.0089319
|
0.0086671
|
0.0088277
|
0.0110001
|
0.0145680
|
0.0126010
|
0.0150791
|
0.0188018
|
0.0131431
|
|
2011
|
0.0019788
|
0.0201408
|
0.0158940
|
0.0091413
|
0.0148027
|
0.0135266
|
0.0261986
|
0.0157071
|
0.0168287
|
0.0097557
|
0.0127182
|
0.0168651
|
0.0184394
|
0.0279146
|
0.0253394
|
0.0201307
|
0.0152804
|
0.0148104
|
0.0072261
|
0.0106307
|
0.0115923
|
0.0131565
|
0.0216129
|
0.0134868
|
0.0169572
|
0.0089247
|
0.0134669
|
0.0189276
|
0.0149649
|
0.0215619
|
0.0145529
|
0.0123813
|
0.0210071
|
0.0107844
|
0.0149761
|
0.0080311
|
0.0067499
|
0.0177142
|
0.0165945
|
0.0218727
|
0.0167365
|
0.0254566
|
0.0188833
|
0.0192812
|
0.0181803
|
0.0229721
|
0.0153788
|
0.0113615
|
0.0084066
|
0.0093753
|
0.0118165
|
0.0202505
|
0.0153967
|
0.0172162
|
0.0111489
|
0.0123902
|
|
2012
|
0.0019612
|
0.0124200
|
0.0218714
|
0.0080891
|
0.0135130
|
0.0145342
|
0.0164698
|
0.0156357
|
0.0183171
|
0.0100713
|
0.0122155
|
0.0185390
|
0.0194318
|
0.0135965
|
0.0199271
|
0.0160274
|
0.0138429
|
0.0143036
|
0.0079759
|
0.0110971
|
0.0121072
|
0.0147637
|
0.0204446
|
0.0148635
|
0.0145853
|
0.0093422
|
0.0152724
|
0.0184880
|
0.0158514
|
0.0239999
|
0.0123706
|
0.0107353
|
0.0156545
|
0.0104763
|
0.0225963
|
0.0083562
|
0.0068475
|
0.0160692
|
0.0105906
|
0.0168434
|
0.0171811
|
0.0368749
|
0.0208107
|
0.0158311
|
0.0264159
|
0.0151272
|
0.0157186
|
0.0109250
|
0.0088490
|
0.0092934
|
0.0141710
|
0.0189056
|
0.0147983
|
0.0152603
|
0.0145468
|
0.0112604
|
|
2013
|
0.0021158
|
0.0134312
|
0.0170268
|
0.0099019
|
0.0141762
|
0.0126431
|
0.0158094
|
0.0242581
|
0.0129520
|
0.0119970
|
0.0145765
|
0.0168709
|
0.0188145
|
0.0161374
|
0.0173422
|
0.0149895
|
0.0134071
|
0.0156368
|
0.0087988
|
0.0127161
|
0.0145100
|
0.0175595
|
0.0220842
|
0.0186220
|
0.0261745
|
0.0097470
|
0.0167463
|
0.0173033
|
0.0137858
|
0.0211676
|
0.0205566
|
0.0099301
|
0.0153956
|
0.0106774
|
0.0187435
|
0.0086222
|
0.0076192
|
0.0160561
|
0.0100967
|
0.0165314
|
0.0194758
|
0.0277417
|
0.0190210
|
0.0213620
|
0.0206956
|
0.0258304
|
0.0147022
|
0.0158797
|
0.0090418
|
0.0087573
|
0.0150554
|
0.0223667
|
0.0134104
|
0.0218583
|
0.0190613
|
0.0129412
|
|
2014
|
0.0019970
|
0.0127841
|
0.0150666
|
0.0080836
|
0.0145165
|
0.0144486
|
0.0175259
|
0.0202143
|
0.0150395
|
0.0087945
|
0.0114606
|
0.0142979
|
0.0219006
|
0.0211051
|
0.0282299
|
0.0165564
|
0.0138714
|
0.0146489
|
0.0094006
|
0.0136680
|
0.0121802
|
0.0130538
|
0.0213866
|
0.0165348
|
0.0188437
|
0.0120731
|
0.0169673
|
0.0159317
|
0.0144649
|
0.0152390
|
0.0132727
|
0.0091570
|
0.0145863
|
0.0113590
|
0.0198347
|
0.0093055
|
0.0068128
|
0.0224735
|
0.0131951
|
0.0190765
|
0.0155219
|
0.0177691
|
0.0285289
|
0.0148529
|
0.0201407
|
0.0210606
|
0.0151298
|
0.0109758
|
0.0079021
|
0.0110974
|
0.0131492
|
0.0166364
|
0.0180357
|
0.0199555
|
0.0162949
|
0.0146627
|
|
2015
|
0.0020098
|
0.0124533
|
0.0119957
|
0.0084030
|
0.0185829
|
0.0149304
|
0.0157382
|
0.0226489
|
0.0168362
|
0.0123734
|
0.0127006
|
0.0194141
|
0.0185563
|
0.0238157
|
0.0221629
|
0.0145712
|
0.0140402
|
0.0173449
|
0.0090167
|
0.0121547
|
0.0154192
|
0.0147460
|
0.0168488
|
0.0161741
|
0.0203235
|
0.0107421
|
0.0175482
|
0.0159302
|
0.0124820
|
0.0186652
|
0.0190640
|
0.0175891
|
0.0185395
|
0.0096046
|
0.0206961
|
0.0082000
|
0.0068298
|
0.0190325
|
0.0114593
|
0.0177944
|
0.0170896
|
0.0216219
|
0.0172824
|
0.0136782
|
0.0211832
|
0.0171110
|
0.0144895
|
0.0103173
|
0.0088221
|
0.0101917
|
0.0117689
|
0.0151396
|
0.0153600
|
0.0227139
|
0.0169312
|
0.0131888
|
|
2016
|
0.0019317
|
0.0121980
|
0.0136299
|
0.0105733
|
0.0163216
|
0.0149522
|
0.0162534
|
0.0184094
|
0.0161183
|
0.0096348
|
0.0095014
|
0.0171077
|
0.0181961
|
0.0154498
|
0.0189239
|
0.0160371
|
0.0135765
|
0.0150515
|
0.0076443
|
0.0113720
|
0.0127374
|
0.0173264
|
0.0176280
|
0.0126222
|
0.0206385
|
0.0083447
|
0.0116494
|
0.0145201
|
0.0131667
|
0.0176358
|
0.0212086
|
0.0108631
|
0.0174313
|
0.0102133
|
0.0280780
|
0.0081621
|
0.0068026
|
0.0166146
|
0.0141060
|
0.0177284
|
0.0163189
|
0.0262309
|
0.0199709
|
0.0160967
|
0.0179857
|
0.0226385
|
0.0178275
|
0.0107107
|
0.0083993
|
0.0114294
|
0.0117242
|
0.0136765
|
0.0144567
|
0.0204240
|
0.0154462
|
0.0145777
|
|
2017
|
0.0020404
|
0.0139593
|
0.0177000
|
0.0104082
|
0.0158942
|
0.0138857
|
0.0200571
|
0.0218064
|
0.0188213
|
0.0143370
|
0.0104810
|
0.0171493
|
0.0206081
|
0.0157075
|
0.0189583
|
0.0144899
|
0.0143773
|
0.0161624
|
0.0086783
|
0.0133651
|
0.0123236
|
0.0121786
|
0.0233778
|
0.0127144
|
0.0205101
|
0.0084439
|
0.0145754
|
0.0157251
|
0.0147515
|
0.0156487
|
0.0178068
|
0.0135716
|
0.0152640
|
0.0102205
|
0.0265270
|
0.0078299
|
0.0068819
|
0.0158424
|
0.0142955
|
0.0258777
|
0.0178202
|
0.0216572
|
0.0216940
|
0.0145377
|
0.0238273
|
0.0256963
|
0.0150999
|
0.0124422
|
0.0089167
|
0.0091058
|
0.0129534
|
0.0147546
|
0.0165428
|
0.0188256
|
0.0155836
|
0.0121100
|
|
2018
|
0.0020143
|
0.0120300
|
0.0160317
|
0.0082054
|
0.0122086
|
0.0147205
|
0.0178912
|
0.0224363
|
0.0137918
|
0.0090610
|
0.0099489
|
0.0225144
|
0.0189156
|
0.0195042
|
0.0158621
|
0.0150777
|
0.0154213
|
0.0154052
|
0.0083251
|
0.0107456
|
0.0122023
|
0.0138171
|
0.0228161
|
0.0143027
|
0.0205737
|
0.0071637
|
0.0178663
|
0.0181526
|
0.0139005
|
0.0145928
|
0.0172943
|
0.0106215
|
0.0186467
|
0.0117724
|
0.0207088
|
0.0075857
|
0.0071347
|
0.0161435
|
0.0133022
|
0.0238794
|
0.0189292
|
0.0331732
|
0.0245874
|
0.0153301
|
0.0198918
|
0.0244149
|
0.0142390
|
0.0112380
|
0.0081114
|
0.0106139
|
0.0131728
|
0.0217622
|
0.0178725
|
0.0222147
|
0.0245573
|
0.0120737
|
Gini standard errors for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
Texas (48)
|
954
|
955
|
956
|
957
|
958
|
959
|
960
|
961
|
962
|
963
|
964
|
965
|
966
|
967
|
968
|
969
|
970
|
971
|
972
|
973
|
974
|
975
|
976
|
977
|
978
|
979
|
980
|
981
|
982
|
983
|
984
|
985
|
986
|
987
|
988
|
989
|
990
|
991
|
992
|
993
|
994
|
995
|
996
|
997
|
998
|
999
|
1000
|
1001
|
1002
|
|
2005
|
0.0015008
|
0.0130181
|
0.0216024
|
0.0194417
|
0.0208567
|
0.0210725
|
0.0151848
|
0.0055732
|
0.0149642
|
0.0116450
|
0.0178136
|
0.0234439
|
0.0128621
|
0.0151749
|
0.0212791
|
0.0180179
|
0.0071509
|
0.0086073
|
0.0138724
|
0.0139025
|
0.0047349
|
0.0052329
|
0.0141966
|
0.0157266
|
0.0187451
|
0.0172376
|
0.0094320
|
0.0214237
|
0.0055801
|
0.0167569
|
0.0289070
|
0.0139343
|
0.0155557
|
0.0227446
|
0.0160476
|
0.0234050
|
0.0128727
|
0.0039757
|
0.0113345
|
0.0155011
|
0.0089477
|
0.0095722
|
0.0064191
|
0.0138884
|
0.0059808
|
0.0166039
|
0.0154101
|
0.0096262
|
0.0144957
|
0.0108119
|
|
2006
|
0.0014567
|
0.0154006
|
0.0170302
|
0.0183612
|
0.0161472
|
0.0189335
|
0.0153143
|
0.0063328
|
0.0245756
|
0.0100192
|
0.0158136
|
0.0194358
|
0.0092780
|
0.0170154
|
0.0219949
|
0.0202652
|
0.0075697
|
0.0078879
|
0.0153342
|
0.0199309
|
0.0048353
|
0.0049073
|
0.0133225
|
0.0183961
|
0.0183872
|
0.0230454
|
0.0098716
|
0.0267623
|
0.0061371
|
0.0162160
|
0.0211166
|
0.0184756
|
0.0174221
|
0.0151967
|
0.0202267
|
0.0155520
|
0.0166709
|
0.0036627
|
0.0109745
|
0.0143166
|
0.0087646
|
0.0083497
|
0.0063780
|
0.0172591
|
0.0050773
|
0.0153136
|
0.0138626
|
0.0082572
|
0.0113397
|
0.0094095
|
|
2007
|
0.0013992
|
0.0128402
|
0.0190389
|
0.0198377
|
0.0142198
|
0.0217661
|
0.0219899
|
0.0053914
|
0.0205104
|
0.0092130
|
0.0138506
|
0.0288940
|
0.0092893
|
0.0166808
|
0.0189671
|
0.0183505
|
0.0066061
|
0.0074506
|
0.0198708
|
0.0177844
|
0.0046292
|
0.0048451
|
0.0287355
|
0.0183864
|
0.0195722
|
0.0154727
|
0.0092631
|
0.0166740
|
0.0056751
|
0.0192067
|
0.0262901
|
0.0154345
|
0.0178517
|
0.0161878
|
0.0170176
|
0.0126887
|
0.0123341
|
0.0034753
|
0.0112823
|
0.0112623
|
0.0083652
|
0.0092911
|
0.0057631
|
0.0139424
|
0.0052649
|
0.0369728
|
0.0139244
|
0.0089464
|
0.0134966
|
0.0094914
|
|
2008
|
0.0014089
|
0.0116679
|
0.0192104
|
0.0217886
|
0.0198459
|
0.0277485
|
0.0172638
|
0.0057387
|
0.0194779
|
0.0090004
|
0.0149923
|
0.0209398
|
0.0124255
|
0.0126012
|
0.0200631
|
0.0154583
|
0.0073401
|
0.0081470
|
0.0139220
|
0.0178582
|
0.0045948
|
0.0048912
|
0.0189037
|
0.0160780
|
0.0330773
|
0.0188607
|
0.0093453
|
0.0229270
|
0.0053051
|
0.0163818
|
0.0292525
|
0.0136752
|
0.0142250
|
0.0168338
|
0.0209811
|
0.0177906
|
0.0115569
|
0.0035169
|
0.0119603
|
0.0102306
|
0.0084523
|
0.0095266
|
0.0058247
|
0.0130819
|
0.0056248
|
0.0222364
|
0.0141704
|
0.0102543
|
0.0106541
|
0.0095364
|
|
2009
|
0.0013785
|
0.0133569
|
0.0176819
|
0.0174843
|
0.0143787
|
0.0215424
|
0.0151111
|
0.0051749
|
0.0198772
|
0.0090293
|
0.0162262
|
0.0158425
|
0.0110842
|
0.0171611
|
0.0205459
|
0.0205918
|
0.0068233
|
0.0074931
|
0.0185989
|
0.0271957
|
0.0044775
|
0.0046387
|
0.0174632
|
0.0194839
|
0.0197473
|
0.0181299
|
0.0085804
|
0.0237811
|
0.0051994
|
0.0144217
|
0.0162084
|
0.0200975
|
0.0190610
|
0.0144864
|
0.0135143
|
0.0170941
|
0.0120765
|
0.0034678
|
0.0107012
|
0.0113547
|
0.0080273
|
0.0080360
|
0.0063464
|
0.0133044
|
0.0055821
|
0.0182329
|
0.0144515
|
0.0076345
|
0.0116112
|
0.0097536
|
|
2010
|
0.0012696
|
0.0145009
|
0.0138128
|
0.0166727
|
0.0163014
|
0.0214333
|
0.0124761
|
0.0051716
|
0.0194701
|
0.0079011
|
0.0144381
|
0.0173782
|
0.0100721
|
0.0148521
|
0.0201934
|
0.0137052
|
0.0062211
|
0.0066441
|
0.0178622
|
0.0203321
|
0.0041777
|
0.0044603
|
0.0226578
|
0.0192572
|
0.0210219
|
0.0235262
|
0.0083850
|
0.0259119
|
0.0048705
|
0.0153433
|
0.0199758
|
0.0117986
|
0.0187855
|
0.0159152
|
0.0183480
|
0.0145715
|
0.0110912
|
0.0031699
|
0.0097562
|
0.0118737
|
0.0079436
|
0.0089231
|
0.0052474
|
0.0128304
|
0.0048345
|
0.0154414
|
0.0137453
|
0.0082804
|
0.0117172
|
0.0099591
|
|
2011
|
0.0015192
|
0.0121274
|
0.0169213
|
0.0194535
|
0.0227573
|
0.0252106
|
0.0186569
|
0.0057611
|
0.0148485
|
0.0109244
|
0.0175972
|
0.0182217
|
0.0125838
|
0.0206684
|
0.0173599
|
0.0169734
|
0.0082726
|
0.0095332
|
0.0156138
|
0.0186464
|
0.0050251
|
0.0049855
|
0.0223706
|
0.0156213
|
0.0162682
|
0.0147529
|
0.0102789
|
0.0217328
|
0.0068724
|
0.0183021
|
0.0237133
|
0.0165825
|
0.0155752
|
0.0192233
|
0.0163365
|
0.0164990
|
0.0169744
|
0.0036775
|
0.0109142
|
0.0138692
|
0.0107517
|
0.0122185
|
0.0061582
|
0.0128175
|
0.0066170
|
0.0151294
|
0.0140857
|
0.0096721
|
0.0119108
|
0.0097749
|
|
2012
|
0.0014644
|
0.0145570
|
0.0153812
|
0.0175874
|
0.0156852
|
0.0275934
|
0.0153317
|
0.0058402
|
0.0165238
|
0.0119185
|
0.0151311
|
0.0162201
|
0.0100413
|
0.0178312
|
0.0252698
|
0.0167777
|
0.0073493
|
0.0066551
|
0.0162296
|
0.0145126
|
0.0041781
|
0.0051849
|
0.0276377
|
0.0236791
|
0.0156026
|
0.0291143
|
0.0115161
|
0.0325273
|
0.0071601
|
0.0151961
|
0.0171313
|
0.0212471
|
0.0162732
|
0.0154593
|
0.0173229
|
0.0152833
|
0.0143389
|
0.0036594
|
0.0107088
|
0.0134787
|
0.0089884
|
0.0081199
|
0.0063073
|
0.0114126
|
0.0056752
|
0.0167474
|
0.0124808
|
0.0088077
|
0.0136392
|
0.0128734
|
|
2013
|
0.0014298
|
0.0106193
|
0.0386299
|
0.0257420
|
0.0185482
|
0.0292785
|
0.0156891
|
0.0068308
|
0.0175957
|
0.0099999
|
0.0172874
|
0.0301749
|
0.0116590
|
0.0132559
|
0.0243884
|
0.0188841
|
0.0068492
|
0.0071527
|
0.0150504
|
0.0158068
|
0.0045859
|
0.0055246
|
0.0169300
|
0.0190390
|
0.0178338
|
0.0191117
|
0.0104641
|
0.0237564
|
0.0061698
|
0.0159511
|
0.0296264
|
0.0145392
|
0.0153382
|
0.0182096
|
0.0177721
|
0.0179681
|
0.0143912
|
0.0035624
|
0.0113914
|
0.0101708
|
0.0089195
|
0.0084002
|
0.0059399
|
0.0110365
|
0.0050889
|
0.0147689
|
0.0132441
|
0.0082152
|
0.0128398
|
0.0109203
|
|
2014
|
0.0013878
|
0.0114431
|
0.0215077
|
0.0171926
|
0.0162604
|
0.0228401
|
0.0166212
|
0.0057678
|
0.0201234
|
0.0086615
|
0.0130843
|
0.0182563
|
0.0113108
|
0.0170458
|
0.0174322
|
0.0156341
|
0.0061246
|
0.0071286
|
0.0110505
|
0.0165844
|
0.0042803
|
0.0049758
|
0.0210649
|
0.0174427
|
0.0198973
|
0.0193783
|
0.0085074
|
0.0216754
|
0.0062463
|
0.0192857
|
0.0183494
|
0.0156457
|
0.0142487
|
0.0212735
|
0.0117566
|
0.0242999
|
0.0122847
|
0.0034199
|
0.0114798
|
0.0147966
|
0.0084261
|
0.0088163
|
0.0057337
|
0.0120256
|
0.0050560
|
0.0221956
|
0.0177155
|
0.0081546
|
0.0099824
|
0.0127966
|
|
2015
|
0.0014195
|
0.0138962
|
0.0248409
|
0.0172062
|
0.0180804
|
0.0220693
|
0.0148409
|
0.0059715
|
0.0163218
|
0.0096937
|
0.0247526
|
0.0290293
|
0.0105912
|
0.0164827
|
0.0177916
|
0.0145718
|
0.0063400
|
0.0072104
|
0.0154441
|
0.0163392
|
0.0044822
|
0.0047645
|
0.0178314
|
0.0192880
|
0.0163005
|
0.0222218
|
0.0084866
|
0.0177235
|
0.0063423
|
0.0151061
|
0.0215511
|
0.0177094
|
0.0174852
|
0.0187185
|
0.0195159
|
0.0155208
|
0.0140939
|
0.0034952
|
0.0145371
|
0.0141307
|
0.0097720
|
0.0087267
|
0.0057975
|
0.0105734
|
0.0051271
|
0.0203825
|
0.0163949
|
0.0093213
|
0.0104193
|
0.0106938
|
|
2016
|
0.0013751
|
0.0122569
|
0.0195212
|
0.0177811
|
0.0124275
|
0.0249904
|
0.0174059
|
0.0059059
|
0.0174278
|
0.0081472
|
0.0133033
|
0.0195601
|
0.0138072
|
0.0138440
|
0.0171712
|
0.0209978
|
0.0061440
|
0.0061148
|
0.0149875
|
0.0221473
|
0.0041713
|
0.0043782
|
0.0175745
|
0.0178921
|
0.0239211
|
0.0181282
|
0.0095689
|
0.0217203
|
0.0062252
|
0.0149788
|
0.0274829
|
0.0164621
|
0.0172709
|
0.0164289
|
0.0187888
|
0.0158950
|
0.0121707
|
0.0037068
|
0.0105414
|
0.0130128
|
0.0092859
|
0.0083697
|
0.0054524
|
0.0110847
|
0.0050642
|
0.0206551
|
0.0129173
|
0.0081195
|
0.0148543
|
0.0103190
|
|
2017
|
0.0014595
|
0.0137816
|
0.0191269
|
0.0153215
|
0.0127835
|
0.0196347
|
0.0146773
|
0.0054313
|
0.0193253
|
0.0085625
|
0.0141382
|
0.0209425
|
0.0135676
|
0.0135235
|
0.0169704
|
0.0193611
|
0.0063753
|
0.0066689
|
0.0128177
|
0.0131301
|
0.0041248
|
0.0047791
|
0.0154362
|
0.0188559
|
0.0219323
|
0.0206066
|
0.0086471
|
0.0227805
|
0.0080200
|
0.0154701
|
0.0260892
|
0.0143811
|
0.0158094
|
0.0151774
|
0.0300836
|
0.0159936
|
0.0138044
|
0.0037650
|
0.0116878
|
0.0207059
|
0.0086046
|
0.0079726
|
0.0062051
|
0.0096606
|
0.0050704
|
0.0175729
|
0.0131801
|
0.0076152
|
0.0117344
|
0.0092472
|
|
2018
|
0.0013717
|
0.0126889
|
0.0227757
|
0.0158462
|
0.0141717
|
0.0218022
|
0.0176731
|
0.0059067
|
0.0186168
|
0.0082955
|
0.0157490
|
0.0224363
|
0.0107703
|
0.0158906
|
0.0198848
|
0.0168863
|
0.0061962
|
0.0064950
|
0.0128197
|
0.0141373
|
0.0042549
|
0.0046873
|
0.0151315
|
0.0203640
|
0.0178960
|
0.0183556
|
0.0082023
|
0.0235131
|
0.0059382
|
0.0142449
|
0.0207271
|
0.0149810
|
0.0168553
|
0.0180359
|
0.0215796
|
0.0191574
|
0.0141291
|
0.0033791
|
0.0139766
|
0.0138984
|
0.0091028
|
0.0074358
|
0.0057566
|
0.0111427
|
0.0051520
|
0.0173337
|
0.0174833
|
0.0105738
|
0.0110294
|
0.0096787
|
Next, we observe the gini coefficients for the five most populous states (and all PUMAs within).
# and a third loop to output ginis
for(i in c("06", "12", "36", "42", "48")){
df.state.puma.wide <- puma_state_gini %>%
filter(STATEFIP == i & YEAR > 2004) %>%
dplyr::select(YEAR, hh_inc, PUMA, LEVEL) %>%
mutate(PUMA = replace(as.character(PUMA), LEVEL == "State",
first(acs_data$State[acs_data$STATEFIP == i]))) %>%
dplyr::select(YEAR, hh_inc, PUMA) %>%
group_by(YEAR) %>%
pivot_wider(names_from = PUMA, values_from = hh_inc)
print(kable(df.state.puma.wide, caption = "Gini values for the five most populous states and their PUMAs with complete data (2005-2018)") %>%
kable_styling() %>%
scroll_box(width = "900px", height = "500px"))
}
Gini values for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
California (6)
|
49
|
50
|
51
|
52
|
53
|
54
|
55
|
56
|
57
|
58
|
59
|
60
|
61
|
62
|
63
|
64
|
65
|
66
|
67
|
68
|
69
|
70
|
71
|
72
|
73
|
74
|
75
|
76
|
77
|
78
|
79
|
80
|
81
|
82
|
83
|
84
|
85
|
86
|
87
|
88
|
89
|
90
|
91
|
92
|
93
|
94
|
95
|
96
|
97
|
98
|
99
|
100
|
101
|
102
|
103
|
104
|
105
|
106
|
107
|
108
|
109
|
110
|
111
|
112
|
113
|
114
|
115
|
116
|
117
|
118
|
119
|
120
|
121
|
122
|
123
|
124
|
125
|
126
|
127
|
128
|
129
|
130
|
131
|
132
|
133
|
134
|
135
|
136
|
137
|
138
|
139
|
140
|
141
|
142
|
143
|
144
|
145
|
146
|
147
|
148
|
149
|
150
|
151
|
152
|
153
|
154
|
155
|
156
|
157
|
158
|
|
2005
|
0.4688495
|
0.5382906
|
0.4766929
|
0.4748733
|
0.4559046
|
0.4533413
|
0.4382343
|
0.4133599
|
0.3674899
|
0.4047332
|
0.3801963
|
0.4181875
|
0.4693296
|
0.4603503
|
0.4518209
|
0.4453265
|
0.4495673
|
0.4629754
|
0.4981256
|
0.4444868
|
0.4563183
|
0.4388620
|
0.4455386
|
0.4377086
|
0.5056018
|
0.4287486
|
0.4620559
|
0.4480872
|
0.4255917
|
0.4848808
|
0.5164812
|
0.4406674
|
0.5001545
|
0.5328114
|
0.5156287
|
0.4620248
|
0.3948598
|
0.3834128
|
0.4140076
|
0.4604133
|
0.4827415
|
0.4339230
|
0.4807396
|
0.4167590
|
0.4044055
|
0.4163912
|
0.4285448
|
0.4593660
|
0.4965925
|
0.3878230
|
0.4396474
|
0.4301526
|
0.4319333
|
0.4374672
|
0.4988913
|
0.4310586
|
0.4137134
|
0.4742795
|
0.4547648
|
0.4008387
|
0.4287550
|
0.4959407
|
0.4145645
|
0.3573928
|
0.4340925
|
0.4274422
|
0.4127769
|
0.4270382
|
0.4415439
|
0.4943560
|
0.4076464
|
0.4617215
|
0.4371822
|
0.3768604
|
0.5224333
|
0.5540146
|
0.5680120
|
0.4606051
|
0.4679772
|
0.4549207
|
0.4196049
|
0.4405353
|
0.4487155
|
0.4087287
|
0.4147963
|
0.4985726
|
0.4244134
|
0.4758692
|
0.5016358
|
0.4856736
|
0.4733551
|
0.4402842
|
0.3991567
|
0.3631902
|
0.4253971
|
0.4726158
|
0.4459789
|
0.4642151
|
0.4652230
|
0.4251799
|
0.4130810
|
0.3841864
|
0.4476734
|
0.3861104
|
0.4506652
|
0.4417380
|
0.4256814
|
0.4781597
|
0.4404950
|
0.4256463
|
0.4690752
|
|
2006
|
0.4659449
|
0.5024780
|
0.4762638
|
0.4709483
|
0.4463294
|
0.4243363
|
0.4047789
|
0.4503861
|
0.3777059
|
0.3943177
|
0.3971703
|
0.4433649
|
0.4593564
|
0.4256838
|
0.4556336
|
0.4466362
|
0.4302382
|
0.4613499
|
0.4285828
|
0.4472958
|
0.4595947
|
0.4194478
|
0.4259776
|
0.4299976
|
0.5015031
|
0.4305924
|
0.4570134
|
0.4262303
|
0.3933047
|
0.4788342
|
0.4839047
|
0.4517823
|
0.4460167
|
0.5258468
|
0.5482332
|
0.4096221
|
0.4272296
|
0.3890777
|
0.3939625
|
0.3858100
|
0.4331678
|
0.5176937
|
0.4677591
|
0.4097422
|
0.3794231
|
0.4245166
|
0.4360509
|
0.4554205
|
0.4920036
|
0.3785601
|
0.4237953
|
0.4251834
|
0.4628110
|
0.4386810
|
0.5072111
|
0.4383358
|
0.4467101
|
0.4559186
|
0.4553763
|
0.4341231
|
0.4302342
|
0.4731267
|
0.4144181
|
0.3835550
|
0.4349210
|
0.4227400
|
0.3960573
|
0.4225762
|
0.4501918
|
0.4850214
|
0.4264433
|
0.4385243
|
0.4174179
|
0.3937396
|
0.4909743
|
0.5315506
|
0.5751061
|
0.4536344
|
0.4455785
|
0.4363044
|
0.4461943
|
0.4266412
|
0.4779285
|
0.3789476
|
0.3994845
|
0.5061368
|
0.4270043
|
0.4389055
|
0.5133456
|
0.4728641
|
0.4811062
|
0.4240678
|
0.3762808
|
0.4014061
|
0.4399294
|
0.4750508
|
0.4598343
|
0.4772181
|
0.4536273
|
0.4428075
|
0.3845291
|
0.4106936
|
0.4434283
|
0.4171307
|
0.4433519
|
0.4495515
|
0.4482303
|
0.4318200
|
0.4513408
|
0.4259701
|
0.4527010
|
|
2007
|
0.4684264
|
0.5127010
|
0.5125310
|
0.4830646
|
0.4409544
|
0.4348997
|
0.4474454
|
0.4164188
|
0.3789145
|
0.4029753
|
0.3743069
|
0.4177506
|
0.4646881
|
0.4579287
|
0.4553901
|
0.4359702
|
0.4415693
|
0.4509070
|
0.4728978
|
0.4860553
|
0.4546270
|
0.3975831
|
0.4310732
|
0.4265613
|
0.5110806
|
0.4234804
|
0.4551776
|
0.4542163
|
0.4079427
|
0.5032268
|
0.4678523
|
0.4501143
|
0.5006991
|
0.5273581
|
0.5260034
|
0.4535334
|
0.4305110
|
0.3985651
|
0.3963193
|
0.4591671
|
0.4468711
|
0.5114261
|
0.4579294
|
0.4140935
|
0.3931920
|
0.3970937
|
0.4398885
|
0.4636648
|
0.5116767
|
0.4076312
|
0.4200217
|
0.4174079
|
0.4558215
|
0.4407719
|
0.4993226
|
0.4719788
|
0.4414711
|
0.4531368
|
0.4559056
|
0.3946877
|
0.4165609
|
0.5073382
|
0.4211554
|
0.3741718
|
0.4294892
|
0.4102361
|
0.3784625
|
0.4244602
|
0.4329047
|
0.4756269
|
0.4160076
|
0.4485863
|
0.4243787
|
0.4235872
|
0.5071600
|
0.5336522
|
0.5503481
|
0.5017825
|
0.4552521
|
0.4810437
|
0.4508337
|
0.4367534
|
0.4825721
|
0.3867823
|
0.4043287
|
0.5047680
|
0.4357523
|
0.4754426
|
0.5237410
|
0.4730037
|
0.4842826
|
0.4337162
|
0.3817785
|
0.3921526
|
0.4327505
|
0.5107975
|
0.4641233
|
0.4807360
|
0.4637627
|
0.4215211
|
0.3864321
|
0.3776781
|
0.4561701
|
0.4221657
|
0.4507314
|
0.4261103
|
0.4391940
|
0.4580921
|
0.4438275
|
0.4344685
|
0.4476707
|
|
2008
|
0.4719104
|
0.5178572
|
0.4871353
|
0.4761460
|
0.4246737
|
0.4270344
|
0.4309532
|
0.4244535
|
0.3632221
|
0.4057901
|
0.4122668
|
0.4339825
|
0.4567151
|
0.4600616
|
0.4571811
|
0.4249319
|
0.4097060
|
0.4651972
|
0.4942224
|
0.4756133
|
0.4546875
|
0.3836865
|
0.4712100
|
0.4278058
|
0.5122741
|
0.4265614
|
0.4485227
|
0.4477599
|
0.4297724
|
0.5057985
|
0.4987516
|
0.4756374
|
0.4943605
|
0.5314865
|
0.5289990
|
0.4331644
|
0.4109406
|
0.3883718
|
0.4255064
|
0.4256190
|
0.4559666
|
0.4567127
|
0.4656068
|
0.4320379
|
0.3989984
|
0.4133270
|
0.4200920
|
0.4789804
|
0.4989959
|
0.3715785
|
0.4786115
|
0.4286895
|
0.4584449
|
0.4358820
|
0.4948706
|
0.4599873
|
0.4355797
|
0.4621941
|
0.4601403
|
0.4228040
|
0.4168339
|
0.4966110
|
0.4105102
|
0.3791442
|
0.4266570
|
0.4390925
|
0.3999479
|
0.4280666
|
0.4336210
|
0.4872671
|
0.4271290
|
0.4805462
|
0.4162392
|
0.4300929
|
0.5181321
|
0.5438344
|
0.5748773
|
0.4827406
|
0.4462076
|
0.4947493
|
0.4403935
|
0.4455326
|
0.4347309
|
0.3802424
|
0.4066006
|
0.5102468
|
0.4268987
|
0.4581223
|
0.5515438
|
0.4695368
|
0.4666604
|
0.4236609
|
0.3671904
|
0.3712178
|
0.4454760
|
0.4996920
|
0.4701178
|
0.4772635
|
0.4657044
|
0.3984966
|
0.3753660
|
0.3990327
|
0.4678507
|
0.4563574
|
0.4384403
|
0.4311376
|
0.4510522
|
0.4212747
|
0.4358931
|
0.4341208
|
0.4641305
|
|
2009
|
0.4657316
|
0.4917386
|
0.4699830
|
0.4544804
|
0.4522978
|
0.4486588
|
0.4123642
|
0.3974676
|
0.3560107
|
0.3762886
|
0.4249861
|
0.4238238
|
0.4455267
|
0.4309073
|
0.4532257
|
0.4526308
|
0.4064962
|
0.4680826
|
0.4710221
|
0.4857174
|
0.4508781
|
0.4526668
|
0.4666199
|
0.4296532
|
0.5009974
|
0.4363090
|
0.4620828
|
0.4022688
|
0.4107844
|
0.5038899
|
0.4905071
|
0.4336083
|
0.4596178
|
0.5222921
|
0.5340984
|
0.4058260
|
0.3999235
|
0.4307200
|
0.4011404
|
0.4181383
|
0.4444266
|
0.4841022
|
0.4467166
|
0.4160546
|
0.3882738
|
0.4097118
|
0.4416290
|
0.4584832
|
0.4876546
|
0.3886713
|
0.4674994
|
0.4041045
|
0.4445564
|
0.4424138
|
0.4952161
|
0.4497864
|
0.4452628
|
0.4525777
|
0.4490998
|
0.3983839
|
0.4214892
|
0.4929083
|
0.4098581
|
0.3794890
|
0.4433788
|
0.4374532
|
0.4079163
|
0.4195624
|
0.4311665
|
0.4777594
|
0.4247120
|
0.4568251
|
0.4295085
|
0.4163968
|
0.5140029
|
0.5479127
|
0.5741927
|
0.4839692
|
0.4336920
|
0.4514535
|
0.4384842
|
0.4310043
|
0.4418058
|
0.3735090
|
0.3753131
|
0.4885419
|
0.4433901
|
0.4410824
|
0.5408875
|
0.4618327
|
0.4758136
|
0.4252489
|
0.3744353
|
0.4258779
|
0.4211221
|
0.4806959
|
0.4201882
|
0.4654919
|
0.4737649
|
0.4299912
|
0.3962054
|
0.4005511
|
0.4404865
|
0.4226257
|
0.4403154
|
0.4280590
|
0.4252449
|
0.4509927
|
0.4451943
|
0.4385137
|
0.4423270
|
|
2010
|
0.4705484
|
0.5164803
|
0.5039970
|
0.4769115
|
0.4674210
|
0.4504359
|
0.4190169
|
0.4344219
|
0.3861525
|
0.4179268
|
0.4094692
|
0.4368901
|
0.4591436
|
0.4386723
|
0.4511407
|
0.4565799
|
0.4433789
|
0.4639072
|
0.4564071
|
0.4504561
|
0.4511596
|
0.4332999
|
0.4508907
|
0.4295508
|
0.5077251
|
0.4644099
|
0.4626961
|
0.4400158
|
0.4159195
|
0.4835147
|
0.4893338
|
0.4537721
|
0.4777178
|
0.5249328
|
0.5254461
|
0.4059659
|
0.4192434
|
0.3772525
|
0.3915574
|
0.3880655
|
0.4419325
|
0.4665054
|
0.4639373
|
0.4388149
|
0.4158844
|
0.4118838
|
0.4505928
|
0.4545429
|
0.4865538
|
0.4366221
|
0.4329411
|
0.4186010
|
0.4591518
|
0.4850218
|
0.4862122
|
0.4912981
|
0.4576568
|
0.4539576
|
0.4550732
|
0.3984034
|
0.4402182
|
0.4935586
|
0.4224307
|
0.3759372
|
0.4412107
|
0.4354965
|
0.4067642
|
0.4327095
|
0.4405189
|
0.5043733
|
0.4252924
|
0.4706266
|
0.4150509
|
0.4139956
|
0.5095907
|
0.5130475
|
0.5621215
|
0.4559965
|
0.4460055
|
0.4398181
|
0.4892256
|
0.4386488
|
0.4546229
|
0.3783311
|
0.3991822
|
0.4794920
|
0.4270712
|
0.4654297
|
0.4859239
|
0.4773393
|
0.4809047
|
0.4341963
|
0.3836086
|
0.3966221
|
0.4375165
|
0.4755669
|
0.4493729
|
0.4521191
|
0.4493004
|
0.4068706
|
0.3973287
|
0.3932572
|
0.4660075
|
0.4198558
|
0.4368299
|
0.4530750
|
0.4335334
|
0.4387650
|
0.4418435
|
0.4414674
|
0.4695190
|
|
2011
|
0.4800512
|
0.5271742
|
0.4807143
|
0.4834444
|
0.4560216
|
0.4383469
|
0.4487144
|
0.4326605
|
0.3934638
|
0.4094767
|
0.3959132
|
0.4567120
|
0.4597217
|
0.4583086
|
0.4791514
|
0.4878788
|
0.4605256
|
0.4590935
|
0.4746391
|
0.4921737
|
0.4614225
|
0.4453428
|
0.4486452
|
0.4389759
|
0.5170353
|
0.4714479
|
0.4656628
|
0.4343566
|
0.4561308
|
0.4886981
|
0.4874499
|
0.4731119
|
0.4708116
|
0.5397012
|
0.5324819
|
0.4306357
|
0.4038562
|
0.4362410
|
0.4025968
|
0.3964887
|
0.4450247
|
0.4919507
|
0.4648667
|
0.4621689
|
0.4184737
|
0.4078008
|
0.4597138
|
0.4659449
|
0.5030654
|
0.3916852
|
0.4632526
|
0.4166431
|
0.4173822
|
0.4839121
|
0.5301893
|
0.4760158
|
0.4465415
|
0.4645022
|
0.4637085
|
0.4089746
|
0.4306433
|
0.4735765
|
0.4319833
|
0.4112431
|
0.4511349
|
0.4437164
|
0.4287804
|
0.4462601
|
0.4628745
|
0.4818222
|
0.4326815
|
0.4663926
|
0.4290025
|
0.3951874
|
0.5043207
|
0.5285863
|
0.5680855
|
0.4836901
|
0.4394839
|
0.4669014
|
0.4798263
|
0.4390346
|
0.4704978
|
0.4142029
|
0.4057474
|
0.5045879
|
0.4300526
|
0.4592725
|
0.5471902
|
0.4740696
|
0.4945145
|
0.4490480
|
0.4049928
|
0.4220191
|
0.4547782
|
0.4904527
|
0.4776088
|
0.4610086
|
0.4490039
|
0.4460120
|
0.4123312
|
0.3924655
|
0.4748931
|
0.4311435
|
0.4390630
|
0.4571071
|
0.4136484
|
0.4230539
|
0.4616878
|
0.4449035
|
0.4955278
|
|
2012
|
0.4804002
|
0.5288426
|
0.4773737
|
0.4761821
|
0.4615024
|
0.4199195
|
0.4351420
|
0.4593328
|
0.4000153
|
0.4082851
|
0.4275050
|
0.4412383
|
0.4756729
|
0.4303692
|
0.4641999
|
0.4511093
|
0.4412887
|
0.4831318
|
0.4744519
|
0.4717316
|
0.4528761
|
0.4708766
|
0.4462859
|
0.4328935
|
0.4941285
|
0.4385798
|
0.4719444
|
0.4510177
|
0.4140050
|
0.4763257
|
0.4991243
|
0.4928583
|
0.4769645
|
0.5267978
|
0.5482871
|
0.4424797
|
0.4393492
|
0.4253344
|
0.4013404
|
0.3993473
|
0.4673357
|
0.5106323
|
0.4803980
|
0.4575734
|
0.4139110
|
0.4428161
|
0.4476114
|
0.4536615
|
0.5080066
|
0.3761029
|
0.4704209
|
0.4162004
|
0.4724416
|
0.4670576
|
0.5085163
|
0.4588808
|
0.4319770
|
0.4531631
|
0.4659389
|
0.4166234
|
0.4170828
|
0.4968767
|
0.4303594
|
0.3984887
|
0.4654036
|
0.4381863
|
0.4253872
|
0.4513607
|
0.4502826
|
0.4798499
|
0.4429475
|
0.4548946
|
0.4221140
|
0.4048533
|
0.5552824
|
0.5460536
|
0.5798605
|
0.4584204
|
0.4724073
|
0.4469876
|
0.4495501
|
0.4591991
|
0.4590554
|
0.4243503
|
0.4234851
|
0.5114932
|
0.4285160
|
0.4693705
|
0.5414259
|
0.4646906
|
0.5079021
|
0.4356636
|
0.4034356
|
0.4094155
|
0.4398163
|
0.5028644
|
0.4612855
|
0.4766844
|
0.4254869
|
0.4285947
|
0.4304592
|
0.4373061
|
0.4874487
|
0.4219898
|
0.4464155
|
0.4499491
|
0.4363533
|
0.4499537
|
0.4633028
|
0.4435256
|
0.4744565
|
|
2013
|
0.4885798
|
0.5461569
|
0.5023862
|
0.4724089
|
0.4637307
|
0.4669023
|
0.4186065
|
0.4559387
|
0.4212392
|
0.4256180
|
0.4043552
|
0.4455967
|
0.4772018
|
0.4634402
|
0.4754520
|
0.4572600
|
0.4891480
|
0.4848690
|
0.4441967
|
0.4536215
|
0.4615567
|
0.4464091
|
0.4766398
|
0.4573176
|
0.5201733
|
0.4430889
|
0.4866606
|
0.4415122
|
0.4258253
|
0.5246187
|
0.5176884
|
0.4617016
|
0.4788718
|
0.5240325
|
0.5500254
|
0.4373728
|
0.4258158
|
0.4367124
|
0.4152827
|
0.4075182
|
0.4494525
|
0.4936363
|
0.5029201
|
0.4503751
|
0.4063534
|
0.4443833
|
0.4629141
|
0.4503123
|
0.5124511
|
0.4082464
|
0.4516517
|
0.4234207
|
0.4626037
|
0.5051346
|
0.4881722
|
0.4414143
|
0.4532306
|
0.4398917
|
0.4647221
|
0.4330604
|
0.4418931
|
0.5147123
|
0.4344706
|
0.4092340
|
0.4634580
|
0.4466222
|
0.4292513
|
0.4699863
|
0.4491869
|
0.5008633
|
0.4424522
|
0.4306773
|
0.4427183
|
0.3957250
|
0.4902155
|
0.5227046
|
0.5999364
|
0.5110839
|
0.4603742
|
0.4854865
|
0.4864755
|
0.4432229
|
0.4705539
|
0.4150934
|
0.3802653
|
0.5339017
|
0.4383076
|
0.4630606
|
0.5179099
|
0.4976733
|
0.4878924
|
0.4638122
|
0.4136242
|
0.4345901
|
0.4546744
|
0.5082255
|
0.4444135
|
0.4744308
|
0.4593596
|
0.4539981
|
0.4145324
|
0.4225490
|
0.4771335
|
0.4361960
|
0.4446748
|
0.4546013
|
0.4287360
|
0.4690575
|
0.4602571
|
0.4438588
|
0.4863766
|
|
2014
|
0.4877625
|
0.5190406
|
0.4925944
|
0.4939678
|
0.4545248
|
0.4354117
|
0.4247756
|
0.4312696
|
0.3953796
|
0.3954383
|
0.4087546
|
0.4414871
|
0.4949561
|
0.5098418
|
0.4741282
|
0.4732370
|
0.4616339
|
0.4807483
|
0.4683069
|
0.4840842
|
0.4694628
|
0.4496374
|
0.4902416
|
0.4503564
|
0.5158959
|
0.4851665
|
0.4682532
|
0.4586949
|
0.4710850
|
0.4975141
|
0.5076763
|
0.4978207
|
0.4905737
|
0.5463203
|
0.5518567
|
0.4298816
|
0.4261104
|
0.4363037
|
0.4036922
|
0.4532828
|
0.4353148
|
0.4883634
|
0.4778290
|
0.4053216
|
0.3970667
|
0.4047213
|
0.4808399
|
0.4452826
|
0.5012321
|
0.3812036
|
0.4469719
|
0.4218843
|
0.4336232
|
0.4902950
|
0.5169381
|
0.4556814
|
0.4677964
|
0.4921048
|
0.4738944
|
0.4134625
|
0.4498825
|
0.5121928
|
0.4265316
|
0.4044227
|
0.4709500
|
0.4524498
|
0.4420348
|
0.4424570
|
0.4413683
|
0.4807892
|
0.4434173
|
0.4681948
|
0.4218865
|
0.4184377
|
0.5071252
|
0.5214957
|
0.5580970
|
0.4929856
|
0.4625012
|
0.4521710
|
0.4433475
|
0.4711884
|
0.4548195
|
0.4259533
|
0.4267084
|
0.4910180
|
0.4323133
|
0.4746020
|
0.5042194
|
0.4887694
|
0.4870716
|
0.4383694
|
0.3698823
|
0.4210953
|
0.4525559
|
0.4506283
|
0.4674207
|
0.4892337
|
0.4562048
|
0.4273792
|
0.4043559
|
0.4055766
|
0.4730024
|
0.4493376
|
0.4550893
|
0.4513712
|
0.4462423
|
0.4912603
|
0.4571457
|
0.4491391
|
0.5109478
|
|
2015
|
0.4862039
|
0.5211972
|
0.4842743
|
0.4962817
|
0.4522937
|
0.4521339
|
0.4216732
|
0.4214113
|
0.3779193
|
0.3860591
|
0.4224072
|
0.4632126
|
0.4715713
|
0.4780460
|
0.4701867
|
0.4721488
|
0.4592513
|
0.4775042
|
0.4831385
|
0.4648692
|
0.4698077
|
0.4383556
|
0.4993528
|
0.4428009
|
0.5113318
|
0.4397572
|
0.4672118
|
0.4774338
|
0.4351285
|
0.5043312
|
0.5165461
|
0.4820522
|
0.4899127
|
0.5254730
|
0.5414805
|
0.4232180
|
0.4198607
|
0.4376780
|
0.3922352
|
0.4447882
|
0.4586799
|
0.4490524
|
0.4788583
|
0.4439037
|
0.4177477
|
0.4096355
|
0.4497200
|
0.4620873
|
0.5019586
|
0.4012880
|
0.4439369
|
0.4242965
|
0.4678372
|
0.4687027
|
0.5331781
|
0.4842635
|
0.4606205
|
0.4969411
|
0.4696832
|
0.4405399
|
0.4378657
|
0.5113919
|
0.4229676
|
0.4030391
|
0.4668963
|
0.4470832
|
0.4190814
|
0.4261977
|
0.4464743
|
0.4765880
|
0.4166728
|
0.4819775
|
0.4158201
|
0.4067934
|
0.4942167
|
0.5153718
|
0.5770736
|
0.4953208
|
0.4721824
|
0.4738864
|
0.5275571
|
0.4456284
|
0.4712116
|
0.3875958
|
0.4017490
|
0.4965008
|
0.4402891
|
0.4916530
|
0.5617200
|
0.4915679
|
0.4874737
|
0.4482329
|
0.3956363
|
0.4114610
|
0.4451267
|
0.4806661
|
0.4602158
|
0.4864693
|
0.4397831
|
0.4385365
|
0.4460359
|
0.4217205
|
0.4878316
|
0.4225495
|
0.4466099
|
0.4447374
|
0.4550087
|
0.4588134
|
0.4604506
|
0.4328674
|
0.4857553
|
|
2016
|
0.4890393
|
0.5221456
|
0.5012125
|
0.4545402
|
0.4817370
|
0.4354323
|
0.4135857
|
0.4271800
|
0.3908262
|
0.3987201
|
0.4212798
|
0.4770144
|
0.5021184
|
0.4451625
|
0.4570690
|
0.4852808
|
0.4537938
|
0.4962796
|
0.5038995
|
0.4955330
|
0.4676224
|
0.4106691
|
0.4985517
|
0.4673578
|
0.5136363
|
0.4635304
|
0.4806330
|
0.4434204
|
0.4687102
|
0.4991191
|
0.5116535
|
0.4905474
|
0.5053202
|
0.5372850
|
0.5359538
|
0.4192495
|
0.4241871
|
0.4361599
|
0.4099191
|
0.4173338
|
0.4640350
|
0.5144403
|
0.5001040
|
0.4474351
|
0.4148836
|
0.4175054
|
0.4608650
|
0.4887338
|
0.4958780
|
0.3925587
|
0.4319201
|
0.4468439
|
0.4426404
|
0.4709996
|
0.5091200
|
0.4701227
|
0.4505078
|
0.4687144
|
0.4659365
|
0.4391103
|
0.4644696
|
0.4987652
|
0.4325008
|
0.3735555
|
0.4662494
|
0.4449327
|
0.4279078
|
0.4251223
|
0.4630136
|
0.4862381
|
0.4151884
|
0.4802268
|
0.4275170
|
0.4042281
|
0.5083930
|
0.5058813
|
0.5819460
|
0.4750688
|
0.4424794
|
0.4871177
|
0.4401490
|
0.4548405
|
0.4528657
|
0.4222125
|
0.4028828
|
0.5006737
|
0.4552527
|
0.4668376
|
0.5452160
|
0.4755092
|
0.5167679
|
0.4431688
|
0.3892509
|
0.4106877
|
0.4493540
|
0.5017225
|
0.4499550
|
0.5026869
|
0.4799965
|
0.4410355
|
0.4332710
|
0.4190814
|
0.4581603
|
0.4432603
|
0.4220258
|
0.4448533
|
0.4486022
|
0.4730109
|
0.4477203
|
0.4421315
|
0.5179207
|
|
2017
|
0.4849602
|
0.4969596
|
0.4832672
|
0.4574683
|
0.4608106
|
0.4759010
|
0.4125056
|
0.4092330
|
0.3775396
|
0.3972512
|
0.4276666
|
0.4450538
|
0.4988417
|
0.4614873
|
0.4696810
|
0.4851225
|
0.4372622
|
0.4776046
|
0.4969116
|
0.4861718
|
0.4561064
|
0.4005768
|
0.4766726
|
0.4459473
|
0.5012724
|
0.4422792
|
0.4629124
|
0.4506532
|
0.4274738
|
0.5381309
|
0.4946195
|
0.5023966
|
0.4841537
|
0.5265513
|
0.5309976
|
0.4344881
|
0.4223199
|
0.4122222
|
0.4055755
|
0.4113635
|
0.4477907
|
0.5433762
|
0.5275695
|
0.4377418
|
0.4188182
|
0.4120912
|
0.4614880
|
0.4805507
|
0.5005590
|
0.4142929
|
0.4584147
|
0.4123892
|
0.4185932
|
0.4352063
|
0.5125700
|
0.4741676
|
0.4259869
|
0.4474976
|
0.4639925
|
0.4275084
|
0.4544735
|
0.5408225
|
0.4300371
|
0.4154549
|
0.4552909
|
0.4352644
|
0.4201558
|
0.4342754
|
0.4507298
|
0.4772663
|
0.4423946
|
0.4563206
|
0.4466890
|
0.3949395
|
0.5007113
|
0.5080682
|
0.5306470
|
0.4421334
|
0.4743162
|
0.4405274
|
0.4877245
|
0.4648797
|
0.4474982
|
0.3870036
|
0.4206628
|
0.4768209
|
0.4718723
|
0.4719030
|
0.5167931
|
0.4778446
|
0.4799429
|
0.4439129
|
0.4172876
|
0.3919162
|
0.4499013
|
0.4824005
|
0.4555333
|
0.4883994
|
0.4841743
|
0.4568907
|
0.3851282
|
0.4051083
|
0.4648280
|
0.4310958
|
0.4441399
|
0.4248864
|
0.4176949
|
0.4629315
|
0.4691484
|
0.4661657
|
0.4767718
|
|
2018
|
0.4902577
|
0.5124568
|
0.5036585
|
0.4956395
|
0.4554494
|
0.4279695
|
0.4423500
|
0.4211587
|
0.3449550
|
0.4160002
|
0.4026104
|
0.4635947
|
0.4885888
|
0.4833044
|
0.4689529
|
0.4842307
|
0.4473146
|
0.4678053
|
0.4529017
|
0.4503910
|
0.4721899
|
0.4181179
|
0.4606496
|
0.4582208
|
0.5089469
|
0.4906529
|
0.4806830
|
0.4486958
|
0.4612524
|
0.5094776
|
0.5010727
|
0.5192042
|
0.4770013
|
0.5272480
|
0.5325559
|
0.4533731
|
0.4285954
|
0.4109222
|
0.4035154
|
0.4205211
|
0.4568530
|
0.5214903
|
0.5147804
|
0.4135945
|
0.4043503
|
0.4488610
|
0.4494913
|
0.4693905
|
0.4912017
|
0.4260553
|
0.4418344
|
0.4191827
|
0.4421622
|
0.4631956
|
0.4989362
|
0.4565699
|
0.4587451
|
0.4501693
|
0.4729797
|
0.4267017
|
0.4465541
|
0.5453066
|
0.4366096
|
0.4383289
|
0.4543437
|
0.4535212
|
0.4021348
|
0.4457377
|
0.4548846
|
0.4905098
|
0.4397023
|
0.4730013
|
0.4156706
|
0.4166122
|
0.5012344
|
0.5166769
|
0.5630605
|
0.4829012
|
0.4745388
|
0.5199821
|
0.4756156
|
0.4506438
|
0.4629655
|
0.4322303
|
0.4354013
|
0.4880541
|
0.4355806
|
0.4722177
|
0.5240354
|
0.4758001
|
0.5147248
|
0.4593065
|
0.4105485
|
0.3991330
|
0.4514799
|
0.4922980
|
0.4749474
|
0.4800673
|
0.4533743
|
0.4220004
|
0.3968762
|
0.3841409
|
0.4870239
|
0.4306369
|
0.4407305
|
0.4578979
|
0.4235966
|
0.4793131
|
0.5062563
|
0.4456106
|
0.4882056
|
Gini values for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
Florida (12)
|
203
|
204
|
205
|
206
|
207
|
208
|
209
|
210
|
211
|
212
|
213
|
214
|
215
|
216
|
217
|
218
|
219
|
220
|
221
|
222
|
223
|
224
|
225
|
226
|
227
|
228
|
229
|
230
|
231
|
232
|
233
|
234
|
235
|
236
|
237
|
238
|
239
|
240
|
241
|
242
|
243
|
244
|
245
|
246
|
247
|
248
|
249
|
250
|
251
|
252
|
253
|
254
|
255
|
256
|
257
|
258
|
259
|
260
|
261
|
|
2005
|
0.4662982
|
0.5118875
|
0.4514759
|
0.4282348
|
0.4894384
|
0.4325604
|
0.3785366
|
0.4254361
|
0.4680706
|
0.4548030
|
0.4193052
|
0.4212947
|
0.4064510
|
0.4780006
|
0.4741002
|
0.4049987
|
0.4250991
|
0.4546681
|
0.4748180
|
0.4288754
|
0.4277216
|
0.5189965
|
0.4126498
|
0.4567316
|
0.4633219
|
0.4215589
|
0.3981312
|
0.4529658
|
0.4659485
|
0.4555791
|
0.4300104
|
0.4932174
|
0.4883645
|
0.5765357
|
0.4868750
|
0.4255207
|
0.4059534
|
0.4492931
|
0.4765317
|
0.4224587
|
0.4818143
|
0.4993786
|
0.3882408
|
0.4317156
|
0.4587354
|
0.5279896
|
0.5295079
|
0.4770627
|
0.4487328
|
0.4366771
|
0.4747827
|
0.4713996
|
0.4428316
|
0.4187104
|
0.4130220
|
0.4340583
|
0.4330576
|
0.4089550
|
0.4830163
|
0.4341829
|
|
2006
|
0.4651495
|
0.5297658
|
0.4577234
|
0.4276766
|
0.4750660
|
0.4244788
|
0.4180093
|
0.4378395
|
0.4688790
|
0.4657260
|
0.4298009
|
0.4298010
|
0.3525047
|
0.4919565
|
0.4582462
|
0.4155515
|
0.4290729
|
0.4815624
|
0.4751054
|
0.4120513
|
0.4508529
|
0.5579509
|
0.3816084
|
0.4605803
|
0.5228006
|
0.4539976
|
0.3591188
|
0.4171689
|
0.4473049
|
0.4374858
|
0.4222783
|
0.4950365
|
0.4909094
|
0.5515841
|
0.4769275
|
0.4300566
|
0.4236413
|
0.4359846
|
0.5270178
|
0.4074065
|
0.4722882
|
0.5212449
|
0.4255699
|
0.4138356
|
0.4563135
|
0.4672517
|
0.5050207
|
0.4865582
|
0.4362645
|
0.4318036
|
0.4556315
|
0.4787629
|
0.4412737
|
0.4162511
|
0.4147108
|
0.4300664
|
0.4237316
|
0.3995126
|
0.4745248
|
0.4471659
|
|
2007
|
0.4664357
|
0.5335617
|
0.4445842
|
0.4027889
|
0.4752259
|
0.4577273
|
0.4307194
|
0.4524560
|
0.4751720
|
0.4513712
|
0.4210614
|
0.4208502
|
0.4070258
|
0.5014004
|
0.4693853
|
0.4058669
|
0.4211098
|
0.4842554
|
0.4638252
|
0.4256266
|
0.4213541
|
0.5343054
|
0.4550483
|
0.4653852
|
0.5118401
|
0.4121122
|
0.3765862
|
0.4441466
|
0.4614034
|
0.4449979
|
0.4548023
|
0.4851095
|
0.4769779
|
0.5631462
|
0.4642312
|
0.4444262
|
0.3995710
|
0.4554661
|
0.5274959
|
0.3989338
|
0.5004371
|
0.5554821
|
0.4309305
|
0.4635089
|
0.4534428
|
0.5144685
|
0.5226694
|
0.4628076
|
0.4670670
|
0.4217494
|
0.4630553
|
0.4591726
|
0.4431496
|
0.4265053
|
0.4031586
|
0.4214821
|
0.4052052
|
0.4281749
|
0.4716421
|
0.4583441
|
|
2008
|
0.4696204
|
0.4954869
|
0.4550838
|
0.4144978
|
0.4782931
|
0.4293104
|
0.4154426
|
0.4461211
|
0.4704989
|
0.4560302
|
0.4449406
|
0.4281215
|
0.3875304
|
0.4954754
|
0.4882560
|
0.4256074
|
0.4213666
|
0.4516913
|
0.4554795
|
0.4117354
|
0.4229518
|
0.5208422
|
0.4618670
|
0.4704757
|
0.5185424
|
0.4285292
|
0.3665475
|
0.4301618
|
0.4661025
|
0.4711161
|
0.4478555
|
0.5061096
|
0.4898782
|
0.5815055
|
0.4884116
|
0.4002439
|
0.4466740
|
0.4434705
|
0.5037173
|
0.4000853
|
0.5240095
|
0.5479124
|
0.4180555
|
0.4815319
|
0.4592449
|
0.5310046
|
0.5366801
|
0.4920428
|
0.4280979
|
0.4382511
|
0.4604100
|
0.4637033
|
0.4393014
|
0.4046902
|
0.4670077
|
0.4314493
|
0.4096626
|
0.3893347
|
0.4797557
|
0.4509655
|
|
2009
|
0.4678980
|
0.5381474
|
0.4545625
|
0.4152826
|
0.4922038
|
0.4533821
|
0.4098997
|
0.4200509
|
0.4765212
|
0.4613178
|
0.4301714
|
0.4238701
|
0.3978394
|
0.4925176
|
0.4520905
|
0.4349562
|
0.4448555
|
0.4514155
|
0.4656516
|
0.4226020
|
0.4256663
|
0.5271385
|
0.4387758
|
0.4680018
|
0.4993989
|
0.4180341
|
0.3915534
|
0.4226312
|
0.4650002
|
0.4571315
|
0.4360363
|
0.5099350
|
0.4917219
|
0.5519290
|
0.4688044
|
0.4168002
|
0.4408537
|
0.4501593
|
0.5166483
|
0.4111763
|
0.5000114
|
0.5103101
|
0.3985992
|
0.4428502
|
0.4453646
|
0.5255993
|
0.5229896
|
0.5005745
|
0.4609589
|
0.4351994
|
0.4725931
|
0.4618604
|
0.4447327
|
0.4179863
|
0.4409198
|
0.4189223
|
0.4300592
|
0.4172970
|
0.4825694
|
0.4465162
|
|
2010
|
0.4719196
|
0.5230838
|
0.4619693
|
0.4137481
|
0.4726539
|
0.4696436
|
0.4256946
|
0.4748190
|
0.4811422
|
0.4611268
|
0.4388931
|
0.4196267
|
0.3887171
|
0.4964112
|
0.4525090
|
0.4232452
|
0.4203261
|
0.4997324
|
0.4752854
|
0.4283456
|
0.4550263
|
0.5288806
|
0.4590950
|
0.4712344
|
0.5127205
|
0.4312597
|
0.4013058
|
0.4453207
|
0.4710665
|
0.4635521
|
0.4267678
|
0.4885177
|
0.4979359
|
0.5612860
|
0.4877612
|
0.4206561
|
0.3816767
|
0.4586065
|
0.5229874
|
0.4093595
|
0.5065411
|
0.5210351
|
0.4154258
|
0.4708719
|
0.4540357
|
0.4839290
|
0.5184663
|
0.4639497
|
0.4492386
|
0.4338339
|
0.4636057
|
0.4760276
|
0.4201460
|
0.4362414
|
0.4219194
|
0.4353704
|
0.4465407
|
0.4367728
|
0.4644141
|
0.4391657
|
|
2011
|
0.4797610
|
0.5133897
|
0.4686481
|
0.4459715
|
0.4606192
|
0.4695424
|
0.4069161
|
0.4591718
|
0.4864044
|
0.4769496
|
0.4445324
|
0.4226341
|
0.4533889
|
0.5182499
|
0.4931902
|
0.4401134
|
0.4297122
|
0.4751692
|
0.4828415
|
0.4001654
|
0.4659185
|
0.5360114
|
0.4591922
|
0.4754222
|
0.5186070
|
0.4819699
|
0.4083632
|
0.3992520
|
0.4722599
|
0.4695442
|
0.4435865
|
0.5107082
|
0.5009736
|
0.5726520
|
0.4872460
|
0.4488407
|
0.4417997
|
0.4758980
|
0.5145244
|
0.4114087
|
0.5033619
|
0.5026340
|
0.4298442
|
0.4540799
|
0.4641789
|
0.5468161
|
0.5268629
|
0.4678970
|
0.4614149
|
0.4530900
|
0.4624743
|
0.4801272
|
0.4435656
|
0.4283871
|
0.4248880
|
0.4554285
|
0.4551199
|
0.4500045
|
0.4693793
|
0.4625188
|
|
2012
|
0.4802428
|
0.5398041
|
0.4617553
|
0.4426957
|
0.4909967
|
0.4467905
|
0.4378157
|
0.4521737
|
0.4777536
|
0.4704755
|
0.4185451
|
0.4429822
|
0.4149425
|
0.5137893
|
0.5068270
|
0.4645247
|
0.4250677
|
0.4369913
|
0.4797181
|
0.4139429
|
0.4847097
|
0.5487101
|
0.4754161
|
0.4726614
|
0.5387492
|
0.4506923
|
0.4206659
|
0.4251003
|
0.4699815
|
0.4790968
|
0.4451282
|
0.5345721
|
0.5025733
|
0.5769590
|
0.4911824
|
0.4394125
|
0.4559432
|
0.4686143
|
0.5428026
|
0.4249581
|
0.4929708
|
0.5620540
|
0.4164651
|
0.4678045
|
0.4748518
|
0.4765370
|
0.5299903
|
0.5157941
|
0.4457042
|
0.4460516
|
0.4563368
|
0.4825439
|
0.4316239
|
0.4213164
|
0.4282145
|
0.4455349
|
0.4521745
|
0.4327965
|
0.4703218
|
0.4393185
|
|
2013
|
0.4835584
|
0.5234050
|
0.4683951
|
0.4255659
|
0.4744708
|
0.4117512
|
0.4235945
|
0.4704983
|
0.4845484
|
0.4879359
|
0.4362170
|
0.4300179
|
0.4328662
|
0.5199323
|
0.5086692
|
0.4836370
|
0.4015998
|
0.4753278
|
0.4776261
|
0.4259529
|
0.4617518
|
0.5222326
|
0.4747473
|
0.4986530
|
0.5204217
|
0.4563826
|
0.4112796
|
0.4282750
|
0.4876955
|
0.4842869
|
0.4481891
|
0.5090109
|
0.5019399
|
0.5692979
|
0.4926062
|
0.4395406
|
0.4047603
|
0.4671229
|
0.5150850
|
0.4451439
|
0.5056646
|
0.5332677
|
0.4382350
|
0.4694274
|
0.4733619
|
0.5242035
|
0.5282950
|
0.5186380
|
0.4745637
|
0.4480650
|
0.4952765
|
0.4921799
|
0.4369753
|
0.4151691
|
0.4354673
|
0.4335158
|
0.4771952
|
0.4302915
|
0.4754400
|
0.4394893
|
|
2014
|
0.4820291
|
0.5197681
|
0.4756787
|
0.4360364
|
0.4762153
|
0.4646138
|
0.3940309
|
0.4679499
|
0.4853747
|
0.4496855
|
0.4569967
|
0.4693953
|
0.4187183
|
0.4978832
|
0.4813318
|
0.4460717
|
0.4074823
|
0.4308165
|
0.4740294
|
0.4314295
|
0.4590172
|
0.5144232
|
0.4442462
|
0.4666511
|
0.5030041
|
0.4551175
|
0.3945286
|
0.4565711
|
0.4687247
|
0.4600415
|
0.4358303
|
0.4994569
|
0.5214670
|
0.5675210
|
0.4894522
|
0.4310935
|
0.4818949
|
0.4767393
|
0.5568770
|
0.4257339
|
0.5172529
|
0.5136362
|
0.4550183
|
0.4576530
|
0.4636344
|
0.5246301
|
0.5213405
|
0.4639097
|
0.4653533
|
0.4396105
|
0.4899489
|
0.4910454
|
0.4330304
|
0.4576885
|
0.4285161
|
0.4148572
|
0.4330425
|
0.4479159
|
0.4882027
|
0.4685085
|
|
2015
|
0.4862335
|
0.5158704
|
0.4761264
|
0.4474197
|
0.4432741
|
0.4354812
|
0.4067424
|
0.4739327
|
0.4707918
|
0.4832002
|
0.4829386
|
0.4357726
|
0.4250703
|
0.5033790
|
0.4988289
|
0.4612579
|
0.4270309
|
0.4386275
|
0.4957159
|
0.4352802
|
0.4850002
|
0.5450526
|
0.4380447
|
0.4576773
|
0.5297950
|
0.4331191
|
0.3902429
|
0.4297338
|
0.4765975
|
0.4700296
|
0.4415679
|
0.4978626
|
0.5398014
|
0.5837829
|
0.4956334
|
0.4304847
|
0.4360005
|
0.4835759
|
0.5361411
|
0.4307450
|
0.4981937
|
0.5439760
|
0.4132042
|
0.4786314
|
0.4743715
|
0.5267191
|
0.5443468
|
0.4719732
|
0.4781665
|
0.4492091
|
0.4906046
|
0.4925038
|
0.4394033
|
0.4240575
|
0.4540492
|
0.4156889
|
0.4500169
|
0.4290336
|
0.4723233
|
0.4632752
|
|
2016
|
0.4827579
|
0.5047321
|
0.4686737
|
0.4272204
|
0.4854683
|
0.4466478
|
0.4438069
|
0.4650260
|
0.4855618
|
0.4864275
|
0.4711624
|
0.4357596
|
0.4241541
|
0.5101128
|
0.4900919
|
0.4373593
|
0.4226800
|
0.4640724
|
0.4800022
|
0.4216912
|
0.4770455
|
0.5447265
|
0.4743050
|
0.4827612
|
0.5053770
|
0.4314976
|
0.4007499
|
0.4374500
|
0.4714211
|
0.4774691
|
0.4445985
|
0.5201246
|
0.5112713
|
0.5737734
|
0.4888895
|
0.4384778
|
0.4274878
|
0.4737520
|
0.5364956
|
0.4015372
|
0.4899554
|
0.5388548
|
0.4285289
|
0.4666892
|
0.4698172
|
0.5358152
|
0.5434194
|
0.4837301
|
0.4608246
|
0.4705489
|
0.4819007
|
0.4675945
|
0.4588558
|
0.4691938
|
0.4315084
|
0.4054789
|
0.4330731
|
0.4092837
|
0.4912003
|
0.4627877
|
|
2017
|
0.4845617
|
0.5359481
|
0.4692387
|
0.4437243
|
0.4929206
|
0.4659474
|
0.4026137
|
0.4767516
|
0.4994322
|
0.4841466
|
0.4371400
|
0.4304005
|
0.4024221
|
0.5014019
|
0.4710632
|
0.4644486
|
0.4275155
|
0.4566145
|
0.4770459
|
0.4239931
|
0.4403345
|
0.5565258
|
0.4787219
|
0.4839048
|
0.5175983
|
0.4499921
|
0.4213370
|
0.4179059
|
0.4770907
|
0.4680441
|
0.4458051
|
0.5278597
|
0.5031280
|
0.5631588
|
0.4832527
|
0.4288672
|
0.4153733
|
0.4939132
|
0.5350650
|
0.4131637
|
0.5189418
|
0.5229012
|
0.4345920
|
0.4469081
|
0.4874779
|
0.5312186
|
0.5440585
|
0.4972694
|
0.4740183
|
0.4495531
|
0.4787442
|
0.4834909
|
0.4626974
|
0.4705671
|
0.4410584
|
0.4143502
|
0.4283044
|
0.4120416
|
0.4950851
|
0.4817699
|
|
2018
|
0.4866674
|
0.5316082
|
0.4770944
|
0.4221813
|
0.4313656
|
0.4498047
|
0.4317168
|
0.4467004
|
0.4943577
|
0.4824876
|
0.4644393
|
0.4510877
|
0.4094468
|
0.5151415
|
0.5084916
|
0.4782617
|
0.4270541
|
0.4788416
|
0.4747079
|
0.4564340
|
0.4958883
|
0.5344946
|
0.4728455
|
0.5020379
|
0.5017750
|
0.4501999
|
0.4035863
|
0.4421250
|
0.4877690
|
0.4726277
|
0.4673543
|
0.5281894
|
0.4972525
|
0.5682782
|
0.4881271
|
0.4544147
|
0.4212684
|
0.4722627
|
0.5679563
|
0.4296255
|
0.5181917
|
0.5472286
|
0.4320879
|
0.4409297
|
0.4892682
|
0.5135692
|
0.5585094
|
0.5392783
|
0.4788425
|
0.4501136
|
0.4949604
|
0.4802686
|
0.4245432
|
0.4128950
|
0.4680644
|
0.4427666
|
0.4452851
|
0.4509827
|
0.4826020
|
0.4512123
|
Gini values for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
New York (36)
|
633
|
634
|
635
|
636
|
637
|
638
|
639
|
640
|
641
|
642
|
643
|
644
|
645
|
646
|
647
|
648
|
649
|
650
|
651
|
652
|
653
|
654
|
655
|
656
|
657
|
658
|
659
|
660
|
661
|
662
|
663
|
664
|
665
|
666
|
667
|
668
|
669
|
670
|
671
|
672
|
673
|
674
|
675
|
676
|
677
|
678
|
679
|
680
|
681
|
682
|
683
|
684
|
685
|
686
|
687
|
688
|
689
|
690
|
691
|
692
|
693
|
694
|
695
|
696
|
697
|
698
|
699
|
700
|
701
|
702
|
703
|
704
|
705
|
706
|
707
|
708
|
709
|
710
|
711
|
712
|
713
|
714
|
715
|
716
|
717
|
718
|
719
|
720
|
721
|
722
|
723
|
724
|
725
|
726
|
727
|
728
|
729
|
730
|
731
|
732
|
733
|
734
|
735
|
736
|
737
|
738
|
739
|
740
|
741
|
742
|
743
|
744
|
745
|
746
|
747
|
748
|
749
|
750
|
751
|
752
|
753
|
754
|
755
|
|
2005
|
0.4952089
|
0.4296849
|
0.4234534
|
0.4196040
|
0.4253070
|
0.4373155
|
0.4015011
|
0.4850670
|
0.4264568
|
0.4627578
|
0.4556753
|
0.3893441
|
0.4437278
|
0.4596898
|
0.3814271
|
0.4016218
|
0.4521845
|
0.4013731
|
0.4941250
|
0.4325949
|
0.3799051
|
0.4787786
|
0.3929753
|
0.3983432
|
0.4092384
|
0.3910450
|
0.4371087
|
0.4191151
|
0.4162372
|
0.4203839
|
0.4916512
|
0.4384409
|
0.4734992
|
0.4636587
|
0.4127699
|
0.4394284
|
0.4286899
|
0.3767135
|
0.4172041
|
0.3983328
|
0.4529588
|
0.3894431
|
0.4312992
|
0.4727071
|
0.4488750
|
0.5705221
|
0.5415854
|
0.4883291
|
0.5093420
|
0.4963239
|
0.4399799
|
0.3920639
|
0.4491557
|
0.4328322
|
0.3541473
|
0.3820045
|
0.4255199
|
0.3643586
|
0.4874242
|
0.4528772
|
0.3839930
|
0.4147169
|
0.4928185
|
0.3895931
|
0.3916076
|
0.3736555
|
0.3650304
|
0.3953644
|
0.3933185
|
0.3846764
|
0.4707617
|
0.4243271
|
0.4710366
|
0.4385635
|
0.4997522
|
0.4459303
|
0.5144044
|
0.4740504
|
0.4829864
|
0.5289931
|
0.4909224
|
0.6345562
|
0.5085310
|
0.5481393
|
0.5432595
|
0.5722471
|
0.5324091
|
0.4839005
|
0.5239079
|
0.5275379
|
0.4520421
|
0.4529186
|
0.4397109
|
0.4741401
|
0.5103224
|
0.4740973
|
0.5141660
|
0.4869426
|
0.5307001
|
0.5336075
|
0.4699516
|
0.3699758
|
0.4134096
|
0.4695859
|
0.4996056
|
0.5454255
|
0.4904444
|
0.5114828
|
0.4924999
|
0.4732283
|
0.5395002
|
0.4346831
|
0.4042503
|
0.4293836
|
0.3961070
|
0.3559010
|
0.4352880
|
0.3957619
|
0.4512877
|
0.4252568
|
0.4201784
|
0.3988617
|
0.4185470
|
0.4702081
|
|
2006
|
0.4933160
|
0.3909200
|
0.4313751
|
0.4005823
|
0.4239106
|
0.4163032
|
0.4336323
|
0.5045483
|
0.4221858
|
0.4738159
|
0.4859731
|
0.3906166
|
0.3790050
|
0.4570383
|
0.3854703
|
0.4207231
|
0.4048016
|
0.4119689
|
0.4318408
|
0.4061133
|
0.3708648
|
0.5028654
|
0.4542806
|
0.4110717
|
0.4433228
|
0.4449267
|
0.4502688
|
0.4145217
|
0.3772595
|
0.4035475
|
0.4255293
|
0.4012785
|
0.4431784
|
0.4413387
|
0.4098556
|
0.4456231
|
0.4409238
|
0.4322297
|
0.3923819
|
0.3943157
|
0.3742987
|
0.4062724
|
0.4361046
|
0.4579030
|
0.4380952
|
0.5345126
|
0.5117994
|
0.4577339
|
0.5472483
|
0.5000217
|
0.4541025
|
0.4449853
|
0.4460899
|
0.4224895
|
0.3737151
|
0.3820177
|
0.4314897
|
0.4238463
|
0.4652092
|
0.4451531
|
0.3809689
|
0.4375835
|
0.4964719
|
0.4038808
|
0.3878975
|
0.3696567
|
0.3519090
|
0.4050344
|
0.4088134
|
0.3856542
|
0.4780829
|
0.4207461
|
0.4033761
|
0.4233376
|
0.4831680
|
0.4505563
|
0.4887486
|
0.4606513
|
0.4461869
|
0.4917161
|
0.4644057
|
0.5933168
|
0.5257885
|
0.5569462
|
0.5331292
|
0.5530778
|
0.5342204
|
0.5021477
|
0.5274927
|
0.5479564
|
0.3930308
|
0.4383945
|
0.4525282
|
0.5174834
|
0.4740447
|
0.5297255
|
0.5322284
|
0.4723770
|
0.4998947
|
0.5034838
|
0.4752757
|
0.3997227
|
0.4505059
|
0.4813179
|
0.4624948
|
0.4770151
|
0.4846985
|
0.4898364
|
0.5094972
|
0.4606992
|
0.5113123
|
0.4385221
|
0.4017412
|
0.4209656
|
0.4477264
|
0.3768072
|
0.4121138
|
0.4322401
|
0.4510778
|
0.4271324
|
0.4168745
|
0.3936131
|
0.3902730
|
0.4808110
|
|
2007
|
0.4990642
|
0.4264760
|
0.4284401
|
0.4220671
|
0.4251265
|
0.4164332
|
0.3974609
|
0.4591826
|
0.4359051
|
0.4934946
|
0.4444408
|
0.3828699
|
0.3914894
|
0.4608526
|
0.4144438
|
0.4489727
|
0.4089958
|
0.3997847
|
0.4796581
|
0.4228816
|
0.4050550
|
0.5147862
|
0.4361535
|
0.3633709
|
0.4464465
|
0.4145663
|
0.4455534
|
0.4148569
|
0.4255893
|
0.4142575
|
0.4431226
|
0.4437846
|
0.4373342
|
0.4926550
|
0.4102538
|
0.4128414
|
0.4445080
|
0.3959399
|
0.4402180
|
0.4443414
|
0.4435666
|
0.3874074
|
0.4445376
|
0.4728072
|
0.4833414
|
0.5559643
|
0.4934873
|
0.4874741
|
0.5274146
|
0.5249122
|
0.4574016
|
0.4334363
|
0.4555791
|
0.4069188
|
0.3905641
|
0.3703666
|
0.4343406
|
0.3788072
|
0.4873787
|
0.4385006
|
0.3996760
|
0.4175626
|
0.4564439
|
0.3578427
|
0.3937934
|
0.3687078
|
0.3501851
|
0.4071483
|
0.4158306
|
0.4014458
|
0.4880037
|
0.4036954
|
0.4300055
|
0.4520797
|
0.4695726
|
0.4733895
|
0.4645551
|
0.4863243
|
0.4516044
|
0.4961696
|
0.4547581
|
0.5987820
|
0.5358961
|
0.5725448
|
0.5324908
|
0.5716333
|
0.5522384
|
0.5117342
|
0.5558495
|
0.5366076
|
0.3804697
|
0.4401886
|
0.4538456
|
0.4716324
|
0.4783340
|
0.5229091
|
0.5613599
|
0.5290181
|
0.5121709
|
0.4792965
|
0.4695005
|
0.4030414
|
0.4302042
|
0.4450260
|
0.4770260
|
0.4915210
|
0.4755711
|
0.4813747
|
0.4727148
|
0.4696156
|
0.5149486
|
0.4640499
|
0.4173836
|
0.4401145
|
0.4137481
|
0.3516797
|
0.4299594
|
0.3841978
|
0.4388548
|
0.4119368
|
0.4009375
|
0.3957646
|
0.4082116
|
0.4979631
|
|
2008
|
0.5015716
|
0.4206390
|
0.4294087
|
0.4140624
|
0.4326668
|
0.4337247
|
0.4427094
|
0.4780058
|
0.4240413
|
0.5042909
|
0.4706019
|
0.3764954
|
0.3786995
|
0.4515896
|
0.3822850
|
0.4241324
|
0.4128836
|
0.4051479
|
0.4545910
|
0.3966003
|
0.3691604
|
0.5074660
|
0.4122074
|
0.4192275
|
0.4362287
|
0.4286044
|
0.4177031
|
0.4030280
|
0.3768875
|
0.4056611
|
0.4602487
|
0.4163671
|
0.4225173
|
0.4985240
|
0.3872422
|
0.4262885
|
0.4441931
|
0.4151348
|
0.4413352
|
0.4315179
|
0.4262156
|
0.4081745
|
0.4535464
|
0.4772243
|
0.4786233
|
0.5532856
|
0.5142639
|
0.4773163
|
0.5339145
|
0.4921749
|
0.4491278
|
0.4305785
|
0.4175517
|
0.4337778
|
0.3673945
|
0.4087105
|
0.4230777
|
0.3928593
|
0.4877786
|
0.4381973
|
0.4095867
|
0.4315765
|
0.5131781
|
0.3816056
|
0.3747743
|
0.3703294
|
0.3576556
|
0.4036118
|
0.3674562
|
0.3923592
|
0.4996321
|
0.4137042
|
0.4016609
|
0.4395491
|
0.4862622
|
0.4680367
|
0.4486179
|
0.4583977
|
0.4548264
|
0.4902684
|
0.4775763
|
0.5785711
|
0.5608164
|
0.5896508
|
0.5264689
|
0.5587205
|
0.5683370
|
0.5078039
|
0.5818543
|
0.5720701
|
0.3464428
|
0.4158546
|
0.4322429
|
0.5018787
|
0.4729871
|
0.4688373
|
0.5627036
|
0.5024855
|
0.5054738
|
0.5279906
|
0.5043609
|
0.4421804
|
0.4575635
|
0.4742014
|
0.4773862
|
0.4831174
|
0.5021865
|
0.5228010
|
0.4749315
|
0.4482282
|
0.4773739
|
0.4360558
|
0.4450215
|
0.4599476
|
0.4387728
|
0.3680641
|
0.4262656
|
0.4283089
|
0.4589823
|
0.4466118
|
0.4293712
|
0.4071907
|
0.4187534
|
0.4736569
|
|
2009
|
0.5017188
|
0.4103796
|
0.4212505
|
0.4316133
|
0.4217329
|
0.4006294
|
0.4221579
|
0.4759523
|
0.4343967
|
0.4964961
|
0.4778444
|
0.3990740
|
0.3842760
|
0.4433243
|
0.4139905
|
0.4761704
|
0.4259657
|
0.4082716
|
0.4727570
|
0.4221482
|
0.4062486
|
0.5220490
|
0.4523369
|
0.4062558
|
0.4235356
|
0.4448935
|
0.4073381
|
0.4086653
|
0.4252534
|
0.4176237
|
0.4629433
|
0.4335456
|
0.4880364
|
0.4712100
|
0.4419989
|
0.4306107
|
0.4437346
|
0.3968582
|
0.4326472
|
0.4055223
|
0.4318071
|
0.4044221
|
0.4604542
|
0.4941945
|
0.4746535
|
0.5638294
|
0.4997831
|
0.4758860
|
0.5351025
|
0.5190589
|
0.4483326
|
0.4235804
|
0.4335678
|
0.4105930
|
0.3783850
|
0.4071186
|
0.3945423
|
0.4044430
|
0.4428369
|
0.4375628
|
0.4189526
|
0.4351032
|
0.4786225
|
0.4086631
|
0.3910585
|
0.3671195
|
0.3675600
|
0.4256881
|
0.3684220
|
0.3897618
|
0.5230427
|
0.4370520
|
0.4450138
|
0.4212560
|
0.4767424
|
0.4632580
|
0.4794450
|
0.4303108
|
0.4566395
|
0.4847438
|
0.5199972
|
0.5732752
|
0.5488516
|
0.5930450
|
0.5414452
|
0.5524411
|
0.5583546
|
0.5232911
|
0.5420489
|
0.5556719
|
0.4005458
|
0.4443961
|
0.4881942
|
0.5183365
|
0.4757301
|
0.4971478
|
0.5844702
|
0.4771384
|
0.5344774
|
0.5669940
|
0.4832882
|
0.4007279
|
0.4292060
|
0.4617452
|
0.5118828
|
0.4639018
|
0.4807283
|
0.4942314
|
0.4484131
|
0.4273331
|
0.4802015
|
0.4700980
|
0.3928352
|
0.4628638
|
0.4150781
|
0.3811107
|
0.4249434
|
0.4166959
|
0.5208651
|
0.4216324
|
0.4227612
|
0.4120584
|
0.3724815
|
0.4800644
|
|
2010
|
0.4994055
|
0.4857305
|
0.4352844
|
0.3959422
|
0.4214368
|
0.4295313
|
0.4192820
|
0.5633561
|
0.4324216
|
0.4748831
|
0.4494559
|
0.3784638
|
0.3727261
|
0.4781533
|
0.4183748
|
0.4657619
|
0.4360475
|
0.4028162
|
0.4654319
|
0.3967135
|
0.3866878
|
0.5194102
|
0.4062439
|
0.4092962
|
0.4559047
|
0.4095028
|
0.4337462
|
0.4373041
|
0.3859476
|
0.4293731
|
0.4848287
|
0.4283965
|
0.4343962
|
0.4676553
|
0.4232175
|
0.4237741
|
0.4564168
|
0.4242404
|
0.4581175
|
0.4272467
|
0.3957616
|
0.4130071
|
0.4423916
|
0.4902268
|
0.4942600
|
0.5235094
|
0.5162195
|
0.4283873
|
0.5344081
|
0.5356195
|
0.4382663
|
0.4312406
|
0.4322562
|
0.4581058
|
0.3792431
|
0.3685253
|
0.4250470
|
0.3932680
|
0.5021168
|
0.4656881
|
0.4088511
|
0.4004870
|
0.4799502
|
0.3877371
|
0.3930950
|
0.4197177
|
0.3953537
|
0.4204016
|
0.3640872
|
0.3958102
|
0.4885072
|
0.4266259
|
0.4236219
|
0.4530345
|
0.4976461
|
0.4659929
|
0.4312842
|
0.4647836
|
0.4470907
|
0.4982366
|
0.4783739
|
0.6205779
|
0.5730280
|
0.5773299
|
0.5397612
|
0.5663339
|
0.5749428
|
0.5179825
|
0.5848686
|
0.5206047
|
0.4189697
|
0.4383743
|
0.4638175
|
0.4780127
|
0.4328878
|
0.5007398
|
0.5408424
|
0.5171858
|
0.5162864
|
0.5247081
|
0.5425132
|
0.4245485
|
0.4476556
|
0.4721166
|
0.4919788
|
0.4712263
|
0.4965139
|
0.4754883
|
0.4858457
|
0.4747517
|
0.4932917
|
0.4426146
|
0.4258321
|
0.4557290
|
0.4254955
|
0.3903270
|
0.4292967
|
0.4661011
|
0.4965061
|
0.4522391
|
0.4391539
|
0.4273985
|
0.4207980
|
0.5048695
|
|
2011
|
0.5004082
|
0.4291160
|
0.4310988
|
0.4215114
|
0.4328126
|
0.3960187
|
0.4284948
|
0.4937591
|
0.4273497
|
0.4906114
|
0.5143529
|
0.4262321
|
0.3805340
|
0.4901943
|
0.3987548
|
0.4583281
|
0.4205558
|
0.4083810
|
0.4737799
|
0.4199804
|
0.3855355
|
0.4960954
|
0.4240622
|
0.3822752
|
0.4543205
|
0.4274522
|
0.4379106
|
0.4153162
|
0.4167189
|
0.3975459
|
0.4297448
|
0.4133727
|
0.4397983
|
0.4651821
|
0.4265146
|
0.4210563
|
0.4680271
|
0.4395049
|
0.4297145
|
0.4744507
|
0.4480252
|
0.4266783
|
0.4189251
|
0.4911225
|
0.4797206
|
0.5299911
|
0.4944494
|
0.4566875
|
0.5080378
|
0.5185398
|
0.4550968
|
0.4246711
|
0.4271191
|
0.4454236
|
0.3673279
|
0.4222355
|
0.4453008
|
0.3869581
|
0.4630065
|
0.4549506
|
0.4239239
|
0.4181527
|
0.4328546
|
0.3778421
|
0.3906644
|
0.3577549
|
0.3970356
|
0.4106198
|
0.3658218
|
0.3917237
|
0.4940223
|
0.4662498
|
0.4315945
|
0.4768050
|
0.4836068
|
0.4553573
|
0.4468388
|
0.4744896
|
0.4502902
|
0.4687361
|
0.4772729
|
0.5533536
|
0.5217563
|
0.5693208
|
0.5363737
|
0.5549900
|
0.5750975
|
0.5192093
|
0.5478011
|
0.5137203
|
0.4051511
|
0.4301985
|
0.4566710
|
0.4983316
|
0.4969818
|
0.5316630
|
0.5193165
|
0.4959752
|
0.5131648
|
0.5179010
|
0.5289326
|
0.4189731
|
0.4585254
|
0.4804525
|
0.4718493
|
0.4748890
|
0.4998485
|
0.5025525
|
0.5079154
|
0.5018736
|
0.5440179
|
0.4757738
|
0.4536894
|
0.4791394
|
0.4405162
|
0.3762740
|
0.4586263
|
0.4315308
|
0.4064101
|
0.4330451
|
0.4612359
|
0.4418354
|
0.4273676
|
0.5029002
|
|
2012
|
0.4986531
|
0.4645344
|
0.4466056
|
0.4139117
|
0.4363880
|
0.4105991
|
0.4285933
|
0.4866393
|
0.4509964
|
0.4888380
|
0.5155609
|
0.4142822
|
0.3732641
|
0.4423440
|
0.4018374
|
0.4561703
|
0.4203499
|
0.4081671
|
0.4677940
|
0.4294761
|
0.3957814
|
0.5011181
|
0.4154382
|
0.3721154
|
0.4368218
|
0.4472043
|
0.4551437
|
0.4420760
|
0.4204231
|
0.4138516
|
0.4563808
|
0.4354285
|
0.4580606
|
0.4594902
|
0.3921727
|
0.4708753
|
0.4706260
|
0.4321564
|
0.4456938
|
0.4439275
|
0.4548264
|
0.4653024
|
0.4408787
|
0.4769072
|
0.5042293
|
0.5409991
|
0.5062301
|
0.4933706
|
0.5127121
|
0.5018166
|
0.4408682
|
0.4350511
|
0.4154354
|
0.4446267
|
0.3571620
|
0.4044523
|
0.4127463
|
0.4281002
|
0.4389875
|
0.4728800
|
0.4106516
|
0.4092803
|
0.4878663
|
0.4378642
|
0.4153035
|
0.3991970
|
0.3956950
|
0.4112467
|
0.3775262
|
0.4096873
|
0.5389550
|
0.4541415
|
0.4500838
|
0.4541157
|
0.4962908
|
0.4409718
|
0.4791233
|
0.4582100
|
0.4702610
|
0.4832763
|
0.4918546
|
0.5898752
|
0.5750488
|
0.5428116
|
0.5348091
|
0.5375080
|
0.5668506
|
0.5145303
|
0.5719925
|
0.5440571
|
0.4011463
|
0.4271310
|
0.4871057
|
0.5152409
|
0.4629503
|
0.4860320
|
0.5130508
|
0.4784439
|
0.5303232
|
0.4960131
|
0.4843251
|
0.4292069
|
0.4005639
|
0.4446233
|
0.5061271
|
0.4624683
|
0.5022083
|
0.5196973
|
0.4828718
|
0.4686056
|
0.4999488
|
0.4581461
|
0.4439122
|
0.4492291
|
0.4179807
|
0.4011092
|
0.4190365
|
0.4579326
|
0.4489516
|
0.4711734
|
0.4276332
|
0.4316381
|
0.4300729
|
0.4994783
|
|
2013
|
0.5095780
|
0.4471993
|
0.4647152
|
0.4534980
|
0.4403504
|
0.4376444
|
0.4309710
|
0.5010409
|
0.4455815
|
0.4866191
|
0.4614786
|
0.4292146
|
0.3856762
|
0.4814883
|
0.4475514
|
0.4385728
|
0.4242983
|
0.3842121
|
0.4711232
|
0.4276395
|
0.3892838
|
0.4848943
|
0.4438187
|
0.4037689
|
0.4740926
|
0.4458670
|
0.4421989
|
0.4484899
|
0.4074267
|
0.4263501
|
0.4486824
|
0.4679826
|
0.4890348
|
0.5078228
|
0.4164163
|
0.4207484
|
0.4512400
|
0.4120856
|
0.4329797
|
0.4394862
|
0.4800690
|
0.4419485
|
0.4704478
|
0.4767361
|
0.4912696
|
0.5639930
|
0.4910412
|
0.4628849
|
0.5523804
|
0.5114480
|
0.4633899
|
0.4427544
|
0.4366764
|
0.4676477
|
0.3855756
|
0.4075929
|
0.4622129
|
0.4249974
|
0.4993348
|
0.4911168
|
0.4034474
|
0.4239017
|
0.4952059
|
0.4235096
|
0.4116925
|
0.4044011
|
0.3981215
|
0.3756461
|
0.4246673
|
0.4217046
|
0.4649172
|
0.4436091
|
0.4569983
|
0.4543897
|
0.4831554
|
0.5136463
|
0.4741481
|
0.4300345
|
0.4729653
|
0.4674178
|
0.5130196
|
0.5614659
|
0.5308145
|
0.6088289
|
0.5387603
|
0.5270110
|
0.5593845
|
0.5483904
|
0.5631613
|
0.5091582
|
0.4273327
|
0.4743301
|
0.4893279
|
0.5105311
|
0.4723428
|
0.5343108
|
0.5579088
|
0.4951134
|
0.5475982
|
0.5258525
|
0.4947932
|
0.4377367
|
0.4278316
|
0.5025641
|
0.4833318
|
0.4840842
|
0.4845348
|
0.5115826
|
0.5013375
|
0.4698411
|
0.5938068
|
0.4728476
|
0.4775058
|
0.4844337
|
0.4559060
|
0.3970533
|
0.4368216
|
0.4483014
|
0.4510954
|
0.4665250
|
0.4647641
|
0.4103847
|
0.4490724
|
0.5225834
|
|
2014
|
0.5092288
|
0.4438501
|
0.4163214
|
0.4565896
|
0.4355897
|
0.4339795
|
0.4176862
|
0.5012850
|
0.4469904
|
0.4779637
|
0.4845685
|
0.3836325
|
0.3793097
|
0.4964622
|
0.4045974
|
0.4558349
|
0.4281103
|
0.4145908
|
0.4744507
|
0.4010830
|
0.4329497
|
0.5073672
|
0.4356477
|
0.4133371
|
0.4502590
|
0.4479814
|
0.4291102
|
0.4324557
|
0.3918503
|
0.4663811
|
0.4813087
|
0.4498816
|
0.4655690
|
0.4745563
|
0.4277345
|
0.4564552
|
0.4925916
|
0.4226944
|
0.4757822
|
0.4449075
|
0.4415598
|
0.4169454
|
0.4666231
|
0.4892725
|
0.5076159
|
0.5229852
|
0.5108220
|
0.4785901
|
0.5543923
|
0.5112782
|
0.4794213
|
0.4279396
|
0.4325234
|
0.4378101
|
0.3854171
|
0.4239036
|
0.4485016
|
0.4138592
|
0.4926503
|
0.4477264
|
0.4264719
|
0.4476034
|
0.4848493
|
0.4197478
|
0.4078201
|
0.3793951
|
0.3782909
|
0.3830459
|
0.3718993
|
0.4142945
|
0.5232402
|
0.4632330
|
0.4205773
|
0.4567180
|
0.4959612
|
0.4464442
|
0.4752379
|
0.4610356
|
0.4597135
|
0.4972633
|
0.4648996
|
0.5804045
|
0.5725868
|
0.5733284
|
0.5244109
|
0.5446472
|
0.5225995
|
0.5292831
|
0.5775254
|
0.5382320
|
0.4411939
|
0.4337151
|
0.4891125
|
0.4931640
|
0.4785862
|
0.5054708
|
0.5281703
|
0.4996015
|
0.4971331
|
0.4979141
|
0.4871775
|
0.4376552
|
0.4828397
|
0.4754000
|
0.4875121
|
0.5114512
|
0.4891244
|
0.4942723
|
0.4997978
|
0.4763490
|
0.5464522
|
0.4776159
|
0.4374162
|
0.4606241
|
0.4238851
|
0.3845968
|
0.4297728
|
0.4354361
|
0.5105836
|
0.4568809
|
0.4269852
|
0.4157866
|
0.4736179
|
0.5322698
|
|
2015
|
0.5131678
|
0.4527831
|
0.4303597
|
0.4520123
|
0.4419347
|
0.4355668
|
0.3986265
|
0.5133251
|
0.4526792
|
0.4783507
|
0.4817730
|
0.4068685
|
0.3776451
|
0.4657488
|
0.4021297
|
0.4616305
|
0.4450020
|
0.4136711
|
0.5045954
|
0.4202888
|
0.3994491
|
0.4977911
|
0.4090156
|
0.4145684
|
0.4762949
|
0.4355049
|
0.4550019
|
0.4163570
|
0.3868924
|
0.4464598
|
0.4889103
|
0.4563566
|
0.4963021
|
0.5007606
|
0.4171838
|
0.4260036
|
0.4597049
|
0.4213088
|
0.4498347
|
0.4566611
|
0.4221716
|
0.4371655
|
0.4736764
|
0.4851675
|
0.5054792
|
0.5643796
|
0.5318733
|
0.5137717
|
0.5288158
|
0.5289730
|
0.4725274
|
0.4376504
|
0.4422222
|
0.4523454
|
0.3833969
|
0.3906743
|
0.4522285
|
0.4389971
|
0.4858087
|
0.4763691
|
0.4173608
|
0.4406101
|
0.5162340
|
0.4161529
|
0.4217414
|
0.3952683
|
0.3792200
|
0.4494368
|
0.4600279
|
0.4292204
|
0.4783525
|
0.4549630
|
0.4723818
|
0.4872040
|
0.4961574
|
0.4880771
|
0.4769648
|
0.5232267
|
0.4754302
|
0.5515936
|
0.4588020
|
0.5825683
|
0.5406388
|
0.5857399
|
0.5580744
|
0.5817475
|
0.5538227
|
0.5336821
|
0.5727502
|
0.5460266
|
0.3915315
|
0.4512981
|
0.4998786
|
0.5262382
|
0.5026086
|
0.5629947
|
0.5530791
|
0.4834380
|
0.5050872
|
0.5259590
|
0.5062430
|
0.4593360
|
0.4271773
|
0.4689741
|
0.5368920
|
0.4743905
|
0.4889079
|
0.5238418
|
0.4884952
|
0.4767098
|
0.4940866
|
0.4601819
|
0.4268592
|
0.4763803
|
0.4218989
|
0.3842554
|
0.4543809
|
0.4311148
|
0.5007492
|
0.4727564
|
0.4712206
|
0.4060398
|
0.4189644
|
0.4887229
|
|
2016
|
0.5109897
|
0.4458786
|
0.4586450
|
0.4193621
|
0.4455175
|
0.4378957
|
0.4224121
|
0.5274996
|
0.4409318
|
0.5038330
|
0.5173618
|
0.3867343
|
0.4144427
|
0.4756429
|
0.4052159
|
0.4531720
|
0.3956472
|
0.3970928
|
0.4792445
|
0.4256882
|
0.4057902
|
0.5239445
|
0.4295668
|
0.3836667
|
0.4458003
|
0.4604684
|
0.4577582
|
0.4422277
|
0.4174876
|
0.4342771
|
0.5034398
|
0.4495004
|
0.4789545
|
0.4727331
|
0.4172330
|
0.4219298
|
0.4774248
|
0.4371871
|
0.4577934
|
0.4443175
|
0.5015752
|
0.4012026
|
0.4593544
|
0.4857991
|
0.4970281
|
0.5144370
|
0.5082986
|
0.4984660
|
0.5360742
|
0.5125871
|
0.4635564
|
0.4402138
|
0.4192686
|
0.4467570
|
0.3854831
|
0.3882253
|
0.4408799
|
0.3867065
|
0.4885458
|
0.4508174
|
0.4123681
|
0.4446394
|
0.4813661
|
0.4171789
|
0.4301252
|
0.4083214
|
0.4427176
|
0.4184438
|
0.4056692
|
0.4290782
|
0.4966768
|
0.4613319
|
0.4128804
|
0.4525013
|
0.4766593
|
0.4627742
|
0.4554418
|
0.4742836
|
0.4528960
|
0.5346745
|
0.4781940
|
0.5909154
|
0.5791525
|
0.5916248
|
0.5457979
|
0.5732935
|
0.5727750
|
0.5176563
|
0.5903714
|
0.5276183
|
0.4455050
|
0.4926880
|
0.4662306
|
0.5103189
|
0.5237364
|
0.5074461
|
0.5481582
|
0.5146400
|
0.5681435
|
0.5864901
|
0.4968016
|
0.4279298
|
0.4651755
|
0.4498324
|
0.4934502
|
0.4695791
|
0.5160827
|
0.4821630
|
0.4641504
|
0.4864931
|
0.5020401
|
0.4739477
|
0.4611183
|
0.4681341
|
0.4506624
|
0.3984560
|
0.4557944
|
0.4583296
|
0.4775947
|
0.4522857
|
0.3875402
|
0.4223863
|
0.4279462
|
0.5193675
|
|
2017
|
0.5133048
|
0.4390952
|
0.4361612
|
0.4283718
|
0.4465300
|
0.4307420
|
0.4096262
|
0.4922844
|
0.4525515
|
0.4965161
|
0.5523922
|
0.4057880
|
0.3838844
|
0.4908541
|
0.4171472
|
0.4499472
|
0.4149301
|
0.3969495
|
0.4641672
|
0.4348386
|
0.4052074
|
0.4993991
|
0.4250625
|
0.4073825
|
0.4477052
|
0.4185024
|
0.4357497
|
0.4227102
|
0.4291757
|
0.4410922
|
0.4813280
|
0.4404897
|
0.4606338
|
0.4774978
|
0.4310697
|
0.4420961
|
0.4552506
|
0.4277668
|
0.4765340
|
0.4136780
|
0.4254961
|
0.4132597
|
0.4690448
|
0.5006799
|
0.5129393
|
0.5277206
|
0.5066388
|
0.4863264
|
0.5420323
|
0.5375896
|
0.4792384
|
0.4585591
|
0.4400228
|
0.4455545
|
0.3826577
|
0.3799938
|
0.4383157
|
0.3639176
|
0.4927064
|
0.4773364
|
0.4448784
|
0.4449447
|
0.4985532
|
0.4434179
|
0.4037248
|
0.4110094
|
0.4225553
|
0.3899918
|
0.3963004
|
0.4237362
|
0.5287787
|
0.4684995
|
0.4999871
|
0.4586739
|
0.5200127
|
0.4348322
|
0.5139430
|
0.4874222
|
0.4687188
|
0.5003840
|
0.4525503
|
0.5694888
|
0.5962892
|
0.5773970
|
0.5200095
|
0.5551674
|
0.5469160
|
0.5344376
|
0.5754172
|
0.5293937
|
0.4324759
|
0.4650699
|
0.5077884
|
0.5099377
|
0.4965811
|
0.5278703
|
0.5263335
|
0.4905645
|
0.5498917
|
0.5888529
|
0.5159336
|
0.4281502
|
0.4679347
|
0.4976109
|
0.5523986
|
0.4935866
|
0.5026908
|
0.5061892
|
0.4792024
|
0.4766244
|
0.5490759
|
0.4555136
|
0.4046167
|
0.5044982
|
0.4621766
|
0.4016909
|
0.4244965
|
0.4386508
|
0.4582579
|
0.4562146
|
0.4190306
|
0.4384276
|
0.4492962
|
0.5058020
|
|
2018
|
0.5115166
|
0.4465775
|
0.4404974
|
0.4437568
|
0.4404350
|
0.4109288
|
0.4691333
|
0.4822936
|
0.4553043
|
0.4899222
|
0.4374544
|
0.4181261
|
0.4263630
|
0.4478830
|
0.4345759
|
0.4872286
|
0.4292767
|
0.4268098
|
0.4806964
|
0.4237530
|
0.4071723
|
0.4786518
|
0.4245593
|
0.4127674
|
0.4508224
|
0.4794792
|
0.4376227
|
0.3893372
|
0.4565165
|
0.3891778
|
0.4798524
|
0.4299220
|
0.4735731
|
0.5323586
|
0.4297557
|
0.4624724
|
0.4676479
|
0.4722793
|
0.4517702
|
0.4591106
|
0.4441298
|
0.4611734
|
0.4802547
|
0.4835061
|
0.4875880
|
0.5362213
|
0.5294755
|
0.4938092
|
0.5571595
|
0.4980371
|
0.4672930
|
0.4469478
|
0.4402268
|
0.4467854
|
0.3604831
|
0.3960967
|
0.4588610
|
0.3943049
|
0.4696316
|
0.4535228
|
0.4175180
|
0.4127273
|
0.5034513
|
0.4292052
|
0.4177738
|
0.3959029
|
0.4242637
|
0.4274277
|
0.3766613
|
0.4301894
|
0.5659401
|
0.5030548
|
0.4532270
|
0.4405562
|
0.5558824
|
0.4905231
|
0.4656438
|
0.4607815
|
0.5138325
|
0.5139763
|
0.4602157
|
0.5233104
|
0.5966623
|
0.5991165
|
0.5250664
|
0.5615444
|
0.5726407
|
0.5108074
|
0.6026699
|
0.5267678
|
0.4639832
|
0.4113586
|
0.4847897
|
0.5476135
|
0.4910666
|
0.5399749
|
0.5380511
|
0.5173028
|
0.5008578
|
0.5380046
|
0.5154136
|
0.4317321
|
0.4614888
|
0.4947131
|
0.5035460
|
0.4928378
|
0.4987961
|
0.4706030
|
0.5341554
|
0.4549878
|
0.5235632
|
0.4564120
|
0.4301223
|
0.5022522
|
0.3968588
|
0.4137497
|
0.4345763
|
0.4089329
|
0.4644733
|
0.4417204
|
0.4330516
|
0.4134835
|
0.4288816
|
0.4953064
|
Gini values for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
Pennsylvania (42)
|
854
|
855
|
856
|
857
|
858
|
859
|
860
|
861
|
862
|
863
|
864
|
865
|
866
|
867
|
868
|
869
|
870
|
871
|
872
|
873
|
874
|
875
|
876
|
877
|
878
|
879
|
880
|
881
|
882
|
883
|
884
|
885
|
886
|
887
|
888
|
889
|
890
|
891
|
892
|
893
|
894
|
895
|
896
|
897
|
898
|
899
|
900
|
901
|
902
|
903
|
904
|
905
|
906
|
907
|
908
|
|
2005
|
0.4514464
|
0.4518754
|
0.4105195
|
0.4340597
|
0.4218782
|
0.4343543
|
0.4095989
|
0.4516546
|
0.4602622
|
0.4419068
|
0.4121957
|
0.4011782
|
0.4544228
|
0.4168608
|
0.4047550
|
0.4279356
|
0.4137252
|
0.5388295
|
0.4423161
|
0.4594864
|
0.4203174
|
0.4295951
|
0.4196115
|
0.4350987
|
0.4216297
|
0.4343333
|
0.3807796
|
0.4071944
|
0.4300545
|
0.4095328
|
0.4623623
|
0.4285088
|
0.4223065
|
0.4253051
|
0.4556743
|
0.4327977
|
0.4299582
|
0.4443976
|
0.4194991
|
0.4693852
|
0.4920873
|
0.5367711
|
0.4966358
|
0.4969065
|
0.4883476
|
0.4761150
|
0.4596752
|
0.4424145
|
0.4331186
|
0.3994990
|
0.3896568
|
0.3861208
|
0.3676468
|
0.3881004
|
0.4193246
|
0.4212848
|
|
2006
|
0.4531325
|
0.4437106
|
0.4159953
|
0.4195481
|
0.4078173
|
0.4166520
|
0.4142729
|
0.4170530
|
0.4337637
|
0.4330871
|
0.4210409
|
0.4311491
|
0.4809039
|
0.4608257
|
0.4400770
|
0.4061394
|
0.4140132
|
0.5307886
|
0.4493365
|
0.4713394
|
0.4418520
|
0.4070154
|
0.4403526
|
0.3889217
|
0.4367706
|
0.4284426
|
0.3888651
|
0.3966053
|
0.4163000
|
0.3931261
|
0.3931045
|
0.3940760
|
0.4164967
|
0.4217099
|
0.4358772
|
0.4260700
|
0.4418055
|
0.4073264
|
0.4628241
|
0.4252602
|
0.4941389
|
0.5536027
|
0.4884425
|
0.5209570
|
0.4857811
|
0.5030071
|
0.4220369
|
0.4350363
|
0.4448440
|
0.4194715
|
0.4039778
|
0.3412000
|
0.3828897
|
0.4153350
|
0.4363508
|
0.4387759
|
|
2007
|
0.4604500
|
0.4338297
|
0.4238315
|
0.4275515
|
0.4397648
|
0.4321521
|
0.4157561
|
0.4404642
|
0.4288031
|
0.4451989
|
0.4121879
|
0.4544414
|
0.4700314
|
0.4114385
|
0.4248695
|
0.4290286
|
0.4340146
|
0.5639337
|
0.4620345
|
0.5007892
|
0.4750233
|
0.4217486
|
0.4625753
|
0.4306008
|
0.4446787
|
0.4229489
|
0.3805260
|
0.4135743
|
0.4296467
|
0.3951102
|
0.4203635
|
0.4248860
|
0.4097759
|
0.4023153
|
0.4622326
|
0.4244625
|
0.4636975
|
0.4520046
|
0.4678210
|
0.4465967
|
0.4848100
|
0.5201745
|
0.4444240
|
0.5286915
|
0.4564993
|
0.4470414
|
0.4578299
|
0.4409872
|
0.4319025
|
0.4057346
|
0.4341652
|
0.3843938
|
0.3895090
|
0.4481659
|
0.4214888
|
0.4269181
|
|
2008
|
0.4540986
|
0.4449142
|
0.4026597
|
0.4155730
|
0.4146807
|
0.4078440
|
0.3667500
|
0.4308317
|
0.4663000
|
0.4412282
|
0.4249367
|
0.4085490
|
0.4675304
|
0.3937538
|
0.4378414
|
0.4254341
|
0.4233507
|
0.5635322
|
0.4486516
|
0.4558690
|
0.4261892
|
0.4122573
|
0.4520446
|
0.4348664
|
0.4515449
|
0.4265375
|
0.3945765
|
0.3899591
|
0.4421634
|
0.3724373
|
0.4340895
|
0.4150942
|
0.4072927
|
0.4110116
|
0.4318435
|
0.4209481
|
0.4465885
|
0.3758777
|
0.4333621
|
0.4256836
|
0.4749636
|
0.5334710
|
0.5038462
|
0.5203348
|
0.4721034
|
0.4441217
|
0.4726373
|
0.4452619
|
0.4387859
|
0.4106734
|
0.4251581
|
0.3658746
|
0.3803774
|
0.3763413
|
0.4400236
|
0.4293506
|
|
2009
|
0.4596238
|
0.4421446
|
0.4404503
|
0.4296248
|
0.4151231
|
0.3903813
|
0.4305190
|
0.4396118
|
0.4404769
|
0.4569567
|
0.4139908
|
0.4463934
|
0.4605155
|
0.4171907
|
0.3996303
|
0.4162498
|
0.4216736
|
0.5350856
|
0.4624659
|
0.4864677
|
0.4225608
|
0.4082828
|
0.4438775
|
0.4373047
|
0.3861634
|
0.4435472
|
0.3724950
|
0.4089513
|
0.4451061
|
0.4317204
|
0.4081408
|
0.4116216
|
0.4091840
|
0.4155697
|
0.4749071
|
0.4203136
|
0.4549003
|
0.4052592
|
0.4619170
|
0.4698924
|
0.4990038
|
0.5065005
|
0.5011296
|
0.5134836
|
0.5073160
|
0.4737963
|
0.4344758
|
0.4480968
|
0.4478815
|
0.4087904
|
0.4020211
|
0.4092546
|
0.4134216
|
0.4131122
|
0.4454199
|
0.4321950
|
|
2010
|
0.4592992
|
0.4491782
|
0.4276906
|
0.4132352
|
0.4253879
|
0.4089536
|
0.4142345
|
0.4690507
|
0.4265644
|
0.4594123
|
0.4260560
|
0.4352130
|
0.4485894
|
0.4294203
|
0.4255441
|
0.4366010
|
0.3962830
|
0.5538135
|
0.4475432
|
0.4846945
|
0.4398644
|
0.4354075
|
0.4515385
|
0.4179210
|
0.4300519
|
0.4316500
|
0.3762492
|
0.4240564
|
0.4461767
|
0.4181372
|
0.4258525
|
0.4341072
|
0.4215451
|
0.4254067
|
0.4579607
|
0.4373435
|
0.4410932
|
0.4006939
|
0.4575080
|
0.4606132
|
0.5276875
|
0.5371584
|
0.5426905
|
0.4962773
|
0.5100597
|
0.4924143
|
0.4424935
|
0.4480715
|
0.4335900
|
0.4158130
|
0.4227763
|
0.3710612
|
0.3820708
|
0.3913741
|
0.4419600
|
0.4461246
|
|
2011
|
0.4604582
|
0.4567905
|
0.4233157
|
0.4277035
|
0.4391240
|
0.4164306
|
0.4236228
|
0.4330279
|
0.4344843
|
0.4541241
|
0.4278767
|
0.4338000
|
0.4821385
|
0.4526434
|
0.4561753
|
0.4373369
|
0.4589037
|
0.5751964
|
0.4393442
|
0.4560367
|
0.4322162
|
0.4428243
|
0.4728350
|
0.4216092
|
0.4171320
|
0.4243352
|
0.4056957
|
0.4037711
|
0.4457863
|
0.4217361
|
0.4037125
|
0.4282337
|
0.4297925
|
0.4426228
|
0.4275476
|
0.4240741
|
0.4515387
|
0.4598477
|
0.4781112
|
0.4311650
|
0.4653417
|
0.5114699
|
0.5368260
|
0.5359368
|
0.4663005
|
0.4942462
|
0.4637768
|
0.4502152
|
0.4417718
|
0.3963351
|
0.4336319
|
0.3926916
|
0.3911759
|
0.3944963
|
0.3987022
|
0.4419189
|
|
2012
|
0.4641501
|
0.4526331
|
0.4474486
|
0.4146019
|
0.4270108
|
0.4230013
|
0.4110049
|
0.4500496
|
0.4437058
|
0.4652436
|
0.4359134
|
0.4492412
|
0.4648492
|
0.4118916
|
0.4528031
|
0.4299983
|
0.4375898
|
0.5524824
|
0.4364225
|
0.4597876
|
0.4392268
|
0.4409367
|
0.4426218
|
0.4432843
|
0.4273051
|
0.4315318
|
0.4071846
|
0.4514929
|
0.4497650
|
0.4159925
|
0.4048453
|
0.4521879
|
0.3928335
|
0.4191322
|
0.4495601
|
0.4391943
|
0.4615522
|
0.4403354
|
0.4641279
|
0.4570713
|
0.5067003
|
0.5203910
|
0.5052652
|
0.5311640
|
0.5356967
|
0.4278744
|
0.4772347
|
0.4652622
|
0.4558402
|
0.4090785
|
0.4366496
|
0.3923175
|
0.4139209
|
0.3948811
|
0.4493364
|
0.4394099
|
|
2013
|
0.4691303
|
0.4671471
|
0.4289154
|
0.4226842
|
0.4292208
|
0.4078714
|
0.4270553
|
0.4524710
|
0.4411145
|
0.4594942
|
0.4327002
|
0.4248457
|
0.4564970
|
0.4360970
|
0.4125202
|
0.4367745
|
0.4621339
|
0.5630183
|
0.4584435
|
0.4626259
|
0.4436329
|
0.4406571
|
0.4506777
|
0.4703844
|
0.4418484
|
0.4320336
|
0.4106078
|
0.4330029
|
0.4381780
|
0.4355367
|
0.4435501
|
0.4306564
|
0.4335592
|
0.4512973
|
0.4280374
|
0.4481702
|
0.4762000
|
0.4218729
|
0.4596209
|
0.4455983
|
0.5400159
|
0.5251556
|
0.5002794
|
0.5202801
|
0.4870670
|
0.4923599
|
0.4616881
|
0.4768101
|
0.4569951
|
0.4100169
|
0.4448159
|
0.4027670
|
0.3913153
|
0.3948121
|
0.4429662
|
0.4481396
|
|
2014
|
0.4673423
|
0.4602237
|
0.4424092
|
0.4114791
|
0.4299251
|
0.4365128
|
0.4042321
|
0.4630208
|
0.4516336
|
0.4390370
|
0.4394884
|
0.4260018
|
0.4952571
|
0.4257576
|
0.4713568
|
0.4472158
|
0.4547086
|
0.5477010
|
0.4612662
|
0.4811775
|
0.4324533
|
0.4352536
|
0.4700530
|
0.4400940
|
0.4559144
|
0.4465258
|
0.4186741
|
0.4111820
|
0.4624897
|
0.3843187
|
0.4175845
|
0.4296596
|
0.3827888
|
0.4535706
|
0.4387311
|
0.4399624
|
0.4615897
|
0.4564734
|
0.4725628
|
0.4699336
|
0.4951532
|
0.4862053
|
0.5311282
|
0.4934864
|
0.5071316
|
0.4432337
|
0.4504550
|
0.4738594
|
0.4484033
|
0.4251287
|
0.4261075
|
0.3993244
|
0.4293832
|
0.4123128
|
0.4519943
|
0.4609872
|
|
2015
|
0.4689562
|
0.4454850
|
0.4019913
|
0.4178917
|
0.4527258
|
0.4329694
|
0.4157166
|
0.4885285
|
0.4507825
|
0.4499422
|
0.4364496
|
0.4235569
|
0.4628520
|
0.4324267
|
0.4836645
|
0.4311667
|
0.4284430
|
0.5815820
|
0.4608338
|
0.4831646
|
0.4561076
|
0.4416517
|
0.4501111
|
0.4663028
|
0.4516450
|
0.4359940
|
0.4201947
|
0.4129488
|
0.4294688
|
0.4273085
|
0.4510916
|
0.4583533
|
0.4241289
|
0.4319089
|
0.4474020
|
0.4498328
|
0.4694425
|
0.4484461
|
0.4474892
|
0.4652685
|
0.5027606
|
0.4912344
|
0.5066521
|
0.4868207
|
0.4875121
|
0.4709370
|
0.4616100
|
0.4498000
|
0.4503531
|
0.4493136
|
0.4033064
|
0.3610583
|
0.3980815
|
0.4003971
|
0.4760602
|
0.4515638
|
|
2016
|
0.4672412
|
0.4483663
|
0.4303250
|
0.4443662
|
0.4141024
|
0.4454951
|
0.3915314
|
0.4808261
|
0.4430726
|
0.4556075
|
0.4271300
|
0.4391887
|
0.4933007
|
0.4301787
|
0.4477059
|
0.4518635
|
0.4339385
|
0.5514850
|
0.4461694
|
0.4789680
|
0.4323450
|
0.4548018
|
0.4428080
|
0.4233572
|
0.4727377
|
0.4293791
|
0.3834814
|
0.3987461
|
0.4357886
|
0.4100033
|
0.4260180
|
0.4383395
|
0.4634143
|
0.4254372
|
0.4803817
|
0.4444848
|
0.4589420
|
0.4313636
|
0.4774547
|
0.4654511
|
0.5082667
|
0.6178672
|
0.5108107
|
0.5061559
|
0.4567333
|
0.4879923
|
0.4565086
|
0.4677670
|
0.4531290
|
0.4295932
|
0.4064189
|
0.3685830
|
0.4222802
|
0.4189433
|
0.4342475
|
0.4715876
|
|
2017
|
0.4763948
|
0.4708133
|
0.4199580
|
0.4391895
|
0.4492314
|
0.4135338
|
0.4353773
|
0.4565934
|
0.4295896
|
0.4531584
|
0.4188145
|
0.4404254
|
0.4755407
|
0.4324168
|
0.4612925
|
0.4410875
|
0.4479544
|
0.5677820
|
0.4579042
|
0.4881157
|
0.4359799
|
0.4312461
|
0.4653328
|
0.4254184
|
0.4665330
|
0.4249912
|
0.4052534
|
0.4258291
|
0.4438332
|
0.4173470
|
0.4131257
|
0.4569721
|
0.4175655
|
0.4670049
|
0.4839672
|
0.4554054
|
0.4599064
|
0.4362515
|
0.5503529
|
0.5817560
|
0.5253293
|
0.7072820
|
0.5352602
|
0.5165204
|
0.5297366
|
0.4944536
|
0.4629739
|
0.4719234
|
0.4426880
|
0.4083636
|
0.4245329
|
0.3803648
|
0.4020527
|
0.3999538
|
0.4258338
|
0.4659360
|
|
2018
|
0.4716892
|
0.4614758
|
0.4160487
|
0.4277211
|
0.4284202
|
0.4489026
|
0.4231629
|
0.4312509
|
0.4214666
|
0.4258350
|
0.4108551
|
0.4919149
|
0.4789302
|
0.4494706
|
0.4172891
|
0.4310448
|
0.4685284
|
0.5640185
|
0.4635742
|
0.4827203
|
0.4122642
|
0.4252723
|
0.4748336
|
0.4378529
|
0.4189633
|
0.4182725
|
0.4240940
|
0.4305393
|
0.4679649
|
0.3971601
|
0.4544152
|
0.4377843
|
0.4399330
|
0.4423950
|
0.4450450
|
0.4437190
|
0.4583198
|
0.4515403
|
0.4759971
|
0.4594160
|
0.4918972
|
0.5473916
|
0.5215608
|
0.5239640
|
0.5325182
|
0.5153283
|
0.4942462
|
0.4737346
|
0.4483197
|
0.4132480
|
0.4499488
|
0.4116445
|
0.4088786
|
0.4076987
|
0.4502859
|
0.4546902
|
Gini values for the five most populous states and their PUMAs with complete data (2005-2018)
|
YEAR
|
Texas (48)
|
954
|
955
|
956
|
957
|
958
|
959
|
960
|
961
|
962
|
963
|
964
|
965
|
966
|
967
|
968
|
969
|
970
|
971
|
972
|
973
|
974
|
975
|
976
|
977
|
978
|
979
|
980
|
981
|
982
|
983
|
984
|
985
|
986
|
987
|
988
|
989
|
990
|
991
|
992
|
993
|
994
|
995
|
996
|
997
|
998
|
999
|
1000
|
1001
|
1002
|
|
2005
|
0.4725611
|
0.4308579
|
0.4835068
|
0.4410594
|
0.4645173
|
0.4754570
|
0.4609106
|
0.4397255
|
0.4173852
|
0.4175006
|
0.4546943
|
0.4794858
|
0.4800996
|
0.4850489
|
0.4438711
|
0.4548568
|
0.4273553
|
0.4276161
|
0.3786066
|
0.4173098
|
0.4821843
|
0.4432620
|
0.4279504
|
0.4725233
|
0.4633725
|
0.4595085
|
0.4619744
|
0.5208588
|
0.4661917
|
0.5457543
|
0.5370137
|
0.3925145
|
0.4557327
|
0.5018573
|
0.4049998
|
0.4392567
|
0.4548247
|
0.4807418
|
0.4376957
|
0.4455973
|
0.4134774
|
0.3781202
|
0.4857575
|
0.4509518
|
0.4668552
|
0.4802758
|
0.4732561
|
0.4781441
|
0.5289508
|
0.4933219
|
|
2006
|
0.4721527
|
0.4467988
|
0.4546914
|
0.4428624
|
0.4565853
|
0.4776448
|
0.4453025
|
0.4564705
|
0.5280957
|
0.4346987
|
0.4490427
|
0.4608312
|
0.4476608
|
0.4634870
|
0.4339325
|
0.4658555
|
0.4293302
|
0.4259405
|
0.4060170
|
0.4042981
|
0.4824618
|
0.4473427
|
0.4040034
|
0.5204884
|
0.4261447
|
0.4563277
|
0.4738979
|
0.5042810
|
0.4616582
|
0.5201798
|
0.4851311
|
0.4230556
|
0.4729913
|
0.4500014
|
0.4742881
|
0.4254583
|
0.5105756
|
0.4812090
|
0.4429886
|
0.4270380
|
0.4295194
|
0.3764637
|
0.4817026
|
0.4271318
|
0.4506900
|
0.4331479
|
0.4620501
|
0.4779125
|
0.4902813
|
0.4913083
|
|
2007
|
0.4717420
|
0.4466280
|
0.4626271
|
0.4616135
|
0.4438659
|
0.4833261
|
0.4519450
|
0.4384165
|
0.4497759
|
0.4326938
|
0.4247551
|
0.4991428
|
0.4306168
|
0.4789234
|
0.4509017
|
0.4478901
|
0.4032676
|
0.4150282
|
0.4214058
|
0.4124913
|
0.4885453
|
0.4470588
|
0.4417783
|
0.5126624
|
0.4631576
|
0.4610760
|
0.4798866
|
0.4851801
|
0.4659498
|
0.5409961
|
0.5243157
|
0.4149131
|
0.4480999
|
0.4668066
|
0.4491692
|
0.3897808
|
0.4709261
|
0.4876971
|
0.4643575
|
0.4199462
|
0.4273357
|
0.3675089
|
0.4741435
|
0.4271752
|
0.4614371
|
0.4997610
|
0.4566852
|
0.4744275
|
0.4916346
|
0.4810195
|
|
2008
|
0.4736132
|
0.4418011
|
0.4918107
|
0.4655813
|
0.4632755
|
0.5123214
|
0.4510523
|
0.4452980
|
0.4314318
|
0.4318065
|
0.4508531
|
0.4859059
|
0.4544304
|
0.4432575
|
0.4564419
|
0.4240082
|
0.4240830
|
0.4255441
|
0.4000137
|
0.4206920
|
0.4949218
|
0.4449223
|
0.4716392
|
0.4594670
|
0.4777250
|
0.4447462
|
0.4588360
|
0.5122711
|
0.4543704
|
0.5175674
|
0.5411455
|
0.4143119
|
0.4518105
|
0.4848395
|
0.4898373
|
0.4268458
|
0.4450274
|
0.4848931
|
0.4514079
|
0.4155321
|
0.4115354
|
0.3799043
|
0.4856581
|
0.4286441
|
0.4740120
|
0.4964138
|
0.4593149
|
0.4892704
|
0.4805732
|
0.5014416
|
|
2009
|
0.4741431
|
0.4380456
|
0.4515148
|
0.4259194
|
0.4381517
|
0.4795730
|
0.4622356
|
0.4465344
|
0.4530798
|
0.4302052
|
0.4602598
|
0.4626231
|
0.4508380
|
0.4992373
|
0.4692483
|
0.4608867
|
0.4339767
|
0.4220795
|
0.4117835
|
0.4437399
|
0.4932366
|
0.4535970
|
0.4326879
|
0.4890287
|
0.4507466
|
0.4630259
|
0.4521182
|
0.4931121
|
0.4672824
|
0.5380215
|
0.4790727
|
0.4506156
|
0.4836209
|
0.4553646
|
0.4304950
|
0.4697316
|
0.4751278
|
0.4841383
|
0.4602440
|
0.4057488
|
0.4183167
|
0.3563806
|
0.4807336
|
0.4255310
|
0.4667609
|
0.4945885
|
0.4451838
|
0.4752785
|
0.5058073
|
0.4959036
|
|
2010
|
0.4680554
|
0.4388502
|
0.4241250
|
0.4122847
|
0.4512666
|
0.4988942
|
0.4460455
|
0.4411661
|
0.4518809
|
0.4346038
|
0.4316689
|
0.4587889
|
0.4504926
|
0.4783565
|
0.4557157
|
0.4494634
|
0.4282632
|
0.4246320
|
0.4460716
|
0.4056721
|
0.4814577
|
0.4468049
|
0.4733599
|
0.4812277
|
0.4933587
|
0.4758675
|
0.4624208
|
0.5226951
|
0.4586467
|
0.5357907
|
0.4826018
|
0.3966229
|
0.4845726
|
0.4269446
|
0.4717126
|
0.4351943
|
0.4579122
|
0.4787774
|
0.4496821
|
0.4226734
|
0.4383064
|
0.3864428
|
0.4837764
|
0.4182631
|
0.4551341
|
0.4645724
|
0.4750433
|
0.4659826
|
0.4825427
|
0.4853911
|
|
2011
|
0.4753711
|
0.4384498
|
0.4708515
|
0.4750636
|
0.4862440
|
0.5158949
|
0.4881130
|
0.4567340
|
0.4258286
|
0.4415611
|
0.4726964
|
0.4657527
|
0.4681772
|
0.4999504
|
0.4624844
|
0.4549869
|
0.4251361
|
0.4172678
|
0.3996370
|
0.3906052
|
0.4871131
|
0.4571098
|
0.4706051
|
0.4617506
|
0.4292024
|
0.4400409
|
0.4590880
|
0.5187869
|
0.4677161
|
0.5449617
|
0.5067472
|
0.4349701
|
0.4786527
|
0.4699253
|
0.4499221
|
0.4496627
|
0.4836815
|
0.4928330
|
0.4457565
|
0.4313966
|
0.4185794
|
0.4002154
|
0.4904672
|
0.4154608
|
0.4647944
|
0.4728030
|
0.4399121
|
0.4857871
|
0.4902389
|
0.4911304
|
|
2012
|
0.4747593
|
0.4394835
|
0.4752309
|
0.4175149
|
0.4769290
|
0.5223824
|
0.4431794
|
0.4517069
|
0.4399136
|
0.4577715
|
0.4768717
|
0.4553420
|
0.4414471
|
0.4698103
|
0.4881871
|
0.4709294
|
0.4294362
|
0.4187528
|
0.4034737
|
0.3820759
|
0.4841582
|
0.4503709
|
0.5090438
|
0.4800470
|
0.4236378
|
0.4862952
|
0.4742821
|
0.5740410
|
0.4703045
|
0.5413956
|
0.4798930
|
0.4354223
|
0.4558159
|
0.4532929
|
0.4706390
|
0.4109510
|
0.4899535
|
0.4939168
|
0.4402665
|
0.4295296
|
0.4161513
|
0.3792216
|
0.4909889
|
0.4257938
|
0.4662686
|
0.4563911
|
0.4715271
|
0.4697746
|
0.4961252
|
0.5027146
|
|
2013
|
0.4791761
|
0.4351143
|
0.5198347
|
0.4382044
|
0.4599066
|
0.5348343
|
0.4450929
|
0.4585726
|
0.4642417
|
0.4448070
|
0.4519728
|
0.5285233
|
0.4638031
|
0.4552086
|
0.4822268
|
0.4529608
|
0.4339272
|
0.4280273
|
0.4201986
|
0.4141874
|
0.5050793
|
0.4629536
|
0.4420492
|
0.4730999
|
0.4539033
|
0.4947959
|
0.4603408
|
0.5169941
|
0.4611306
|
0.5284422
|
0.5293096
|
0.4245807
|
0.4679580
|
0.4815435
|
0.4780397
|
0.4459001
|
0.4965527
|
0.4949934
|
0.4683650
|
0.3995000
|
0.4414313
|
0.4095375
|
0.4796141
|
0.4234278
|
0.4617014
|
0.4521708
|
0.4901281
|
0.4656343
|
0.5001173
|
0.4905918
|
|
2014
|
0.4817846
|
0.4389181
|
0.4694182
|
0.4387824
|
0.4638818
|
0.4777342
|
0.4714870
|
0.4523368
|
0.4822031
|
0.4451089
|
0.4319831
|
0.4681408
|
0.4478050
|
0.4728045
|
0.4743452
|
0.4458383
|
0.4249475
|
0.4477435
|
0.4008264
|
0.4400655
|
0.4985013
|
0.4650672
|
0.4781956
|
0.4732104
|
0.4507571
|
0.4467435
|
0.4508187
|
0.5213257
|
0.4811474
|
0.5159521
|
0.5014883
|
0.4269430
|
0.4579149
|
0.4690991
|
0.4356681
|
0.4627084
|
0.4964343
|
0.4974609
|
0.4775474
|
0.4210351
|
0.4293864
|
0.4034516
|
0.4866068
|
0.4256989
|
0.4708446
|
0.4930683
|
0.4968717
|
0.4756869
|
0.4843177
|
0.5061090
|
|
2015
|
0.4818033
|
0.4427203
|
0.4759411
|
0.4375245
|
0.4363355
|
0.4748644
|
0.4554205
|
0.4650338
|
0.4456764
|
0.4621434
|
0.4977018
|
0.4873275
|
0.4403542
|
0.4736962
|
0.4710802
|
0.4365562
|
0.4293786
|
0.4374662
|
0.4190004
|
0.4318852
|
0.5009076
|
0.4685987
|
0.4761751
|
0.4658036
|
0.4406296
|
0.4772508
|
0.4372608
|
0.4367266
|
0.4834616
|
0.5167429
|
0.5017278
|
0.4374406
|
0.4824845
|
0.5005207
|
0.4526976
|
0.4507367
|
0.4639973
|
0.4957138
|
0.4823791
|
0.4456566
|
0.4410031
|
0.4035250
|
0.4902037
|
0.4086482
|
0.4624667
|
0.4549919
|
0.4843522
|
0.4850781
|
0.4882358
|
0.5057856
|
|
2016
|
0.4787102
|
0.4574667
|
0.4684209
|
0.4511856
|
0.4259632
|
0.5064289
|
0.4838305
|
0.4513803
|
0.4584048
|
0.4386035
|
0.4470067
|
0.4840580
|
0.4627582
|
0.4489944
|
0.4480368
|
0.4683204
|
0.4333782
|
0.4386493
|
0.4139604
|
0.4069081
|
0.4860618
|
0.4513199
|
0.4429837
|
0.4756049
|
0.4730189
|
0.4546565
|
0.4435591
|
0.5167262
|
0.4754138
|
0.5430912
|
0.5327594
|
0.4340684
|
0.4557421
|
0.4721144
|
0.4570209
|
0.4523314
|
0.4905771
|
0.4976812
|
0.4781799
|
0.4180531
|
0.4447485
|
0.4022360
|
0.4757437
|
0.4309105
|
0.4612435
|
0.4829057
|
0.5085376
|
0.4666465
|
0.4990150
|
0.4979721
|
|
2017
|
0.4763822
|
0.4405759
|
0.4663925
|
0.4258166
|
0.4172836
|
0.5327494
|
0.4870233
|
0.4512124
|
0.4906793
|
0.4371686
|
0.4530439
|
0.4578350
|
0.4517322
|
0.4671533
|
0.4356279
|
0.4502011
|
0.4298802
|
0.4321740
|
0.3974054
|
0.3733873
|
0.4840405
|
0.4511126
|
0.4573214
|
0.4313703
|
0.4140610
|
0.4701844
|
0.4501194
|
0.5371913
|
0.4817076
|
0.5066398
|
0.5050169
|
0.4221685
|
0.4615420
|
0.4817389
|
0.5100251
|
0.4594455
|
0.4821566
|
0.4964634
|
0.4586038
|
0.4351159
|
0.4361629
|
0.4054708
|
0.4722888
|
0.4253694
|
0.4651620
|
0.4838655
|
0.4610366
|
0.4825208
|
0.4898126
|
0.4910716
|
|
2018
|
0.4799454
|
0.4587995
|
0.5014638
|
0.4132385
|
0.4804489
|
0.5042699
|
0.4545657
|
0.4447247
|
0.4719481
|
0.4354140
|
0.4459333
|
0.4980920
|
0.4666510
|
0.4802739
|
0.4627629
|
0.4788045
|
0.4388741
|
0.4349756
|
0.3802584
|
0.4086477
|
0.4886928
|
0.4584392
|
0.4459782
|
0.4596877
|
0.4387302
|
0.4383721
|
0.4626203
|
0.5340457
|
0.4745312
|
0.5238015
|
0.4993978
|
0.4165781
|
0.4884989
|
0.4514755
|
0.4764067
|
0.4457362
|
0.5007063
|
0.4950004
|
0.4835502
|
0.4332044
|
0.4361040
|
0.3914909
|
0.4876535
|
0.4396216
|
0.4728957
|
0.4670150
|
0.4720010
|
0.4798062
|
0.4743696
|
0.4935517
|
Finally, we want to get a sense of trends at the state and local levels. Considering the restricted sample of the five most populous states (CA, FL, NY, PA, and TX), the following analysis describes the trends for the “average” state and county. The Hodrick-Prescott filter models the trend by obtaining filter weights \(\hat{\beta_{j}} = argmin E[(y_t - \hat{y_t}^2]\), where the filter, \(B(L)\), is a function of weights and a lag operator \(L\): \(B(L) = \sum_{j=-\infty}^{\infty}B_jL^j\), and \(L^kx_t = x_{t-k}\). The filter is used in the model \(y_t = B(L)x_t\) to predict time series outcomes.
### sort pumas by increase in gini
df.deltas <- puma_state_gini %>%
dplyr::select(YEAR, hh_inc, PUMA, STATEFIP, LEVEL) %>%
pivot_wider(names_from = YEAR, values_from = hh_inc) %>%
na.omit() %>%
mutate(delta = `2018` - `2005`,
quint = ntile(delta, 5))
# mean income deltas as well
df.inc.deltas <- puma_state_gini %>%
dplyr::select(YEAR, hh_inc_mn, PUMA, STATEFIP, LEVEL) %>%
pivot_wider(names_from = YEAR, values_from = hh_inc_mn) %>%
na.omit() %>%
mutate(delta_inc = `2018` - `2005`)
ggplot(df.deltas, aes(x = delta, col = LEVEL))+
geom_density(lwd = 2)+
geom_vline(xintercept = 0)+
theme_minimal()+
labs(title = "Distribution of change in inequality (2018 Gini - 2005 Gini)",
caption = "States were excluded from this analysis, as there were only 6 values.")

ggplot(df.inc.deltas, aes(x = delta_inc, col = LEVEL))+
geom_density(lwd = 2)+
geom_vline(xintercept = 0)+
theme_minimal()+
labs(title = "Distribution of change in income (2018 Mean - 2005 Mean)",
caption = "Incomes are standardized to 1999 dollars (using the CPI adjustment factor). States excluded.")

puma_state_gini <- puma_state_gini %>% # check that this is working
left_join(dplyr::select(df.deltas, PUMA, delta, quint)) %>%
left_join(dplyr::select(df.inc.deltas, PUMA, delta_inc))
## Joining, by = "PUMA"
## Joining, by = "PUMA"
####### join county and state estimates
ggplot(puma_state_gini, aes(x = YEAR, y = hh_inc, color = LEVEL)) +
geom_point() +
facet_wrap(~LEVEL) +
labs(title = "Gini estimates at the state and PUMA levels, (2005-2018)")

state_ts <- puma_state_gini %>%
filter(LEVEL == "State") %>%
group_by(YEAR, STATEFIP) %>%
summarise(gini = mean(hh_inc))
`California (6)` <- ts(state_ts$gini[state_ts$STATEFIP == "06"], # need to assign to name of state
start = 2005, end = 2018)
`Florida (12)` <- ts(state_ts$gini[state_ts$STATEFIP == "12"], # need to assign to name of state
start = 2005, end = 2018)
`New York (36)` <- ts(state_ts$gini[state_ts$STATEFIP == "36"], # need to assign to name of state
start = 2005, end = 2018)
`Pennsylvania (42)` <- ts(state_ts$gini[state_ts$STATEFIP == "42"], # need to assign to name of state
start = 2005, end = 2018)
`Texas (48)` <- ts(state_ts$gini[state_ts$STATEFIP == "48"], # need to assign to name of state
start = 2005, end = 2018)
# looping wouldn't work with the plot names
state.hp.6 <- hpfilter(`California (6)`)
plot(state.hp.6)

state.hp.12 <- hpfilter(`Florida (12)`)
plot(state.hp.12)

state.hp.36 <- hpfilter(`New York (36)`)
plot(state.hp.36)

state.hp.42 <- hpfilter(`Pennsylvania (42)`)
plot(state.hp.42)

state.hp.48 <- hpfilter(`Texas (48)`)
plot(state.hp.48)

For the five most populous states, we notice a rise in inequality from close to 2008 through 2018. The total increase is roughly 0.02 points for each of these states, although the starting points are different (for example, PA is at 0.45 in 2005 while NY is at 0.495). Texas shows the least increase in Gini, rising only about 0.01 points.
puma_ts <- puma_state_gini %>%
filter(LEVEL == "PUMA") %>%
group_by(YEAR, quint) %>%
summarise(gini = mean(hh_inc))
`1st Quintile` <- ts(puma_ts$gini[puma_ts$quint == "1"], # need to assign to name of state
start = 2005, end = 2018)
`2nd Quintile` <- ts(puma_ts$gini[puma_ts$quint == "2"], # need to assign to name of state
start = 2005, end = 2018)
`3rd Quintile` <- ts(puma_ts$gini[puma_ts$quint == "3"], # need to assign to name of state
start = 2005, end = 2018)
`4th Quintile` <- ts(puma_ts$gini[puma_ts$quint == "4"], # need to assign to name of state
start = 2005, end = 2018)
`5th Quintile` <- ts(puma_ts$gini[puma_ts$quint == "5"], # need to assign to name of state
start = 2005, end = 2018)
# looping wouldn't work with the plot names
puma.hp.1 <- hpfilter(`1st Quintile`)
plot(puma.hp.1)

puma.hp.2 <- hpfilter(`2nd Quintile`)
plot(puma.hp.2)

puma.hp.3 <- hpfilter(`3rd Quintile`)
plot(puma.hp.3)

puma.hp.4 <- hpfilter(`4th Quintile`)
plot(puma.hp.4)

puma.hp.5 <- hpfilter(`5th Quintile`)
plot(puma.hp.5)

At the PUMA level, the 3rd and 4th quintiles (measured by absolute Gini difference from 2005-2018) show increases in Gini that mirror the state-level results (roughly a 0.02 point increase). However, the first quintile shows stable or slightly declining Gini values, while the second quintile shows only a very slight increase. The fifth quintile, on the other hand, shows an increase of nearly 0.05 points.
Now, we compare PUMA level trends in gini coefficients to trends in mean household income. For this analysis, I classified PUMAs into nine groups: increasing, stable, and decreasing, based on their Gini Coefficient and mean income values in 2005 and 2018.
To classify substantial change over time, I converted the mean PUMA standard errors to a margin of error by multiplying by \(MOE_{\delta} = 1.96 \cdot \sqrt{2\bar{SE}_{PUMA}^2}\). Any PUMAs where the Gini rose by more than 0.0417 points, or where the mean income rose by more than $6,769 were classified as increasing (the same threshold was used for decreasing Gini Coefficients and mean income levels). Of the 397 PUMAs in the five largest U.S. states, six are classified as having decreasing Gini coefficients, 326 are classified as stable, and 62 are classified as increasing. For mean income, only one PUMA is classified as decreasing, 248 are classified as stable, and 147 are classified as increasing. Because incomes are standardized at 1999 dollars, this means that a large number of localities saw increases in average earnings during the time period examined. However, only some of these areas experienced substantial rises in inequality (and another group experienced a rise in inequality with no major increase in mean earnings). Further analyses is needed to ajudicate between residential sorting/migration as opposed to changes in local economies.
gini_change <- puma_state_gini %>% filter(LEVEL == "PUMA") %>% dplyr::select(se) %>% summarise(moe = 1.96*mean(se)*sqrt(2)) %>% unlist()
hh_inc_change <- puma_state_gini %>% filter(LEVEL == "PUMA") %>% dplyr::select(hh_inc_se) %>% summarise(moe = 1.96*mean(hh_inc_se)*sqrt(2)) %>% unlist()
df.change.puma <- puma_state_gini %>% filter(LEVEL == "PUMA") %>%
mutate(gini_change = recode(cut(delta, breaks = c(-Inf,-gini_change, gini_change, Inf),
labels = FALSE), "1" = "decreasing gini",
"2" = "stable gini", "3" = "increasing gini"),
inc_change = recode(cut(delta_inc, breaks =
c(-Inf, -hh_inc_change, hh_inc_change, Inf),
labels = FALSE), "1" = "decreasing mean income",
"2" = "stable mean income", "3" = "increasing mean income"))
df.change.table <- table(df.change.puma$gini_change, df.change.puma$inc_change)/14
print(kable(df.change.table[c(1,3,2),c(1,3,2)], caption = "Gini and mean income trends for PUMAs in the five most populous states (2005-2018)") %>%
kable_styling())
Gini and mean income trends for PUMAs in the five most populous states (2005-2018)
|
|
decreasing mean income
|
stable mean income
|
increasing mean income
|
|
decreasing gini
|
0
|
6
|
1
|
|
stable gini
|
1
|
208
|
118
|
|
increasing gini
|
0
|
34
|
28
|