Summary

Row

confirmed

153

death

0 (0%)

Row

Daily cumulative cases by type (Vietnam only)

Comparison

Column

Daily new cases

Cases distribution by type

Map

World map of cases (use + and - icons to zoom in/out)

About

The Coronavirus Dashboard: the case of Vietnam

This Coronavirus dashboard: the case of Vietnam provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Vietnam. This dashboard is built with R using the R Makrdown framework and was adapted from this dashboard by Rami Krispin.

Code

The code behind the dashboard shall be shared publicly.

Data

The input data for this dashboard is the dataset available from the {coronavirus} R package. Make sure to download the development version of the package to have the latest data:

install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")

The data and dashboard are refreshed on a daily basis.

The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus repository.

Update

The data is as of Thursday March 26, 2020 and the dashboard has been updated on Friday March 27, 2020.



---
title: "Coronavirus in Vietnam"
author: "Vinh Dang"
output: 
  flexdashboard::flex_dashboard:
    orientation: rows
    # social: ["facebook", "twitter", "linkedin"]
    source_code: embed
    vertical_layout: fill
---

```{r setup, include=FALSE}
#------------------ Packages ------------------
library(flexdashboard)
# install.packages("devtools")
# devtools::install_github("RamiKrispin/coronavirus", force = TRUE)
library(coronavirus)
update_datasets(silence = TRUE)
data(coronavirus)
coronavirus[coronavirus$Province.State == "Hong Kong",]$Country.Region = "Hong Kong"
# update_datasets()
# View(coronavirus)
# max(coronavirus$date)

`%>%` <- magrittr::`%>%`
#------------------ Parameters ------------------
# Set colors
# https://www.w3.org/TR/css-color-3/#svg-color
confirmed_color <- "purple"
active_color <- "#1f77b4"
recovered_color <- "forestgreen"
death_color <- "red"
#------------------ Data ------------------
df <- coronavirus %>%
  # dplyr::filter(date == max(date)) %>%
  dplyr::filter(Country.Region == "Vietnam") %>%
  dplyr::group_by(Country.Region, type) %>%
  dplyr::summarise(total = sum(cases)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  # dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
  dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
  dplyr::arrange(-confirmed) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "China", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "South Africa", "S.Africa", country)) %>%
  dplyr::mutate(country = trimws(country)) %>%
  dplyr::mutate(country = factor(country, levels = country))

df_daily <- coronavirus %>%
  dplyr::filter(Country.Region == "Vietnam") %>%
  dplyr::group_by(date, type) %>%
  dplyr::summarise(total = sum(cases, na.rm = TRUE)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  dplyr::arrange(date) %>%
  dplyr::ungroup() %>%
  #dplyr::mutate(active = confirmed - death - recovered) %>%
  dplyr::mutate(active = confirmed - death) %>%
  dplyr::mutate(
    confirmed_cum = cumsum(confirmed),
    death_cum = cumsum(death),
    # recovered_cum = cumsum(recovered),
    active_cum = cumsum(active)
  )


df1 <- coronavirus %>% dplyr::filter(date == max(date))
```

Summary
=======================================================================

Row {data-width=400}
-----------------------------------------------------------------------

### confirmed {.value-box}

```{r}

valueBox(
  value = paste(format(sum(df$confirmed), big.mark = ","), "", sep = " "),
  caption = "Total confirmed cases",
  icon = "fas fa-user-md",
  color = confirmed_color
)
```
















### death {.value-box}

```{r}

valueBox(
  value = paste(format(sum(df$death, na.rm = TRUE), big.mark = ","), " (",
    round(100 * sum(df$death, na.rm = TRUE) / sum(df$confirmed), 1),
    "%)",
    sep = ""
  ),
  caption = "Death cases (death rate)",
  icon = "fas fa-heart-broken",
  color = death_color
)
```


Row
-----------------------------------------------------------------------

### **Daily cumulative cases by type** (Vietnam only)
    
```{r}
plotly::plot_ly(data = df_daily) %>%
  plotly::add_trace(
    x = ~date,
    # y = ~active_cum,
    y = ~confirmed_cum,
    type = "scatter",
    mode = "lines+markers",
    # name = "Active",
    name = "Confirmed",
    line = list(color = active_color),
    marker = list(color = active_color)
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~death_cum,
    type = "scatter",
    mode = "lines+markers",
    name = "Death",
    line = list(color = death_color),
    marker = list(color = death_color)
  ) %>%
  plotly::add_annotations(
    x = as.Date("2020-03-06"),
    y = 17,
    text = paste("Patient no 17"),
    xref = "x",
    yref = "y",
    arrowhead = 5,
    arrowhead = 3,
    arrowsize = 1,
    showarrow = TRUE,
    ax = -90,
    ay = -90
  ) %>%
  plotly::add_annotations(
    x = as.Date("2020-03-10"),
    y = 34,
    text = paste("Patient no 34"),
    xref = "x",
    yref = "y",
    arrowhead = 5,
    arrowhead = 3,
    arrowsize = 1,
    showarrow = TRUE,
    ax = -90,
    ay = -90
  ) %>%
  # plotly::add_annotations(
  #   x = as.Date("2020-03-18"),
  #   y = 14,
  #   text = paste(
  #     "New containment",
  #     "",
  #     "measures"
  #   ),
  #   xref = "x",
  #   yref = "y",
  #   arrowhead = 5,
  #   arrowhead = 3,
  #   arrowsize = 1,
  #   showarrow = TRUE,
  #   ax = -10,
  #   ay = -90
  # ) %>%
  plotly::layout(
    title = "",
    yaxis = list(title = "Cumulative number of cases"),
    xaxis = list(title = "Date"),
    legend = list(x = 0.1, y = 0.9),
    hovermode = "compare"
  )
```

Comparison
=======================================================================


Column {data-width=400}
-------------------------------------


### **Daily new cases**
    
```{r}
daily_confirmed <- coronavirus %>%
  dplyr::filter(type == "confirmed") %>%
  dplyr::filter(date >= "2020-02-29") %>%
  
  dplyr::mutate(country = Country.Region) %>%
  dplyr::mutate(country = dplyr::if_else(country == "South Africa", "S.Africa", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "Hong Kong", "HK", country)) %>%
  dplyr::group_by(date, country) %>%
  dplyr::summarise(total = sum(cases)) %>%
  dplyr::ungroup() %>%
  tidyr::pivot_wider(names_from = country, values_from = total)

#----------------------------------------
# Plotting the data

daily_confirmed %>%
  plotly::plot_ly() %>%
  plotly::add_trace(
    x = ~date,
    y = ~Vietnam,
    type = "scatter",
    mode = "lines+markers",
    name = "Vietnam"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~France,
    type = "scatter",
    mode = "lines+markers",
    name = "France"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~Italy,
    type = "scatter",
    mode = "lines+markers",
    name = "Italy"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~US,
    type = "scatter",
    mode = "lines+markers",
    name = "US"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~S.Africa,
    type = "scatter",
    mode = "lines+markers",
    name = "South Africa"
  ) %>%
  plotly::add_trace(
    x = ~date,
    y = ~HK,
    type = "scatter",
    mode = "lines+markers",
    name = "Hong Kong"
  ) %>%
  plotly::layout(
    title = "",
    legend = list(x = 0.1, y = 0.9),
    yaxis = list(title = "Number of new cases"),
    xaxis = list(title = "Date"),
    # paper_bgcolor = "black",
    # plot_bgcolor = "black",
    # font = list(color = 'white'),
    hovermode = "compare",
    margin = list(
      # l = 60,
      # r = 40,
      b = 10,
      t = 10,
      pad = 2
    )
  )
```
 
### **Cases distribution by type**

```{r daily_summary}
df_EU <- coronavirus %>%
  # dplyr::filter(date == max(date)) %>%
  dplyr::filter(Country.Region == "Vietnam" |
    Country.Region == "France" |
    Country.Region == "Italy" |
    Country.Region == "US"  |
    Country.Region == "South Africa" |
    Province.State == "Hong Kong"
    ) %>%
  dplyr::group_by(Country.Region, type) %>%
  dplyr::summarise(total = sum(cases)) %>%
  tidyr::pivot_wider(
    names_from = type,
    values_from = total
  ) %>%
  # dplyr::mutate(unrecovered = confirmed - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(death), 0, death)) %>%
  dplyr::mutate(unrecovered = confirmed - ifelse(is.na(death), 0, death)) %>%
  dplyr::arrange(confirmed) %>%
  dplyr::ungroup() %>%
  dplyr::mutate(country = dplyr::if_else(Country.Region == "United Arab Emirates", "UAE", Country.Region)) %>%
  # plyr::mutate(country = dplyr::if_else(Province.State == "Hong Kong", "Hong Kong", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "Mainland China", "Mainland China", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "North Macedonia", "N.Macedonia", country)) %>%
  dplyr::mutate(country = dplyr::if_else(country == "South Africa", "S.Africa", country)) %>%
  dplyr::mutate(country = trimws(country)) %>%
  dplyr::mutate(country = factor(country, levels = country))

plotly::plot_ly(
  data = df_EU,
  x = ~country,
  # y = ~unrecovered,
  y = ~ confirmed,
  # text =  ~ confirmed,
  # textposition = 'auto',
  type = "bar",
  name = "Confirmed",
  marker = list(color = active_color)
) %>%
  plotly::add_trace(
    y = ~death,
    # text =  ~ death,
    # textposition = 'auto',
    name = "Death",
    marker = list(color = death_color)
  ) %>%
  plotly::layout(
    barmode = "stack",
    yaxis = list(title = "Total cases"),
    xaxis = list(title = ""),
    hovermode = "compare",
    margin = list(
      # l = 60,
      # r = 40,
      b = 10,
      t = 10,
      pad = 2
    )
  )
```


Map
=======================================================================

### **World map of cases** (*use + and - icons to zoom in/out*)

```{r}
# map tab added by Art Steinmetz
library(leaflet)
library(leafpop)
library(purrr)
cv_data_for_plot <- coronavirus %>%
  # dplyr::filter(Country.Region == "Belgium") %>%
  dplyr::filter(cases > 0) %>%
  dplyr::group_by(Country.Region, Province.State, Lat, Long, type) %>%
  dplyr::summarise(cases = sum(cases)) %>%
  dplyr::mutate(log_cases = 2 * log(cases)) %>%
  dplyr::ungroup()
cv_data_for_plot.split <- cv_data_for_plot %>% split(cv_data_for_plot$type)
pal <- colorFactor(c("orange", "red", "green"), domain = c("confirmed", "death", "recovered"))
map_object <- leaflet() %>% addProviderTiles(providers$Stamen.Toner)
names(cv_data_for_plot.split) %>%
  purrr::walk(function(df) {
    map_object <<- map_object %>%
      addCircleMarkers(
        data = cv_data_for_plot.split[[df]],
        lng = ~Long, lat = ~Lat,
        #                 label=~as.character(cases),
        color = ~ pal(type),
        stroke = FALSE,
        fillOpacity = 0.8,
        radius = ~log_cases,
        popup = leafpop::popupTable(cv_data_for_plot.split[[df]],
          feature.id = FALSE,
          row.numbers = FALSE,
          zcol = c("type", "cases", "Country.Region", "Province.State")
        ),
        group = df,
        #                 clusterOptions = markerClusterOptions(removeOutsideVisibleBounds = F),
        labelOptions = labelOptions(
          noHide = F,
          direction = "auto"
        )
      )
  })

map_object %>%
  addLayersControl(
    overlayGroups = names(cv_data_for_plot.split),
    options = layersControlOptions(collapsed = FALSE)
  )
```





About
=======================================================================

**The Coronavirus Dashboard: the case of Vietnam**

This Coronavirus dashboard: the case of Vietnam provides an overview of the 2019 Novel Coronavirus COVID-19 (2019-nCoV) epidemic for Vietnam. This dashboard is built with R using the R Makrdown framework and was adapted from this [dashboard](https://ramikrispin.github.io/coronavirus_dashboard/){target="_blank"} by Rami Krispin.

**Code**

The code behind the dashboard shall be shared publicly.



**Data**

The input data for this dashboard is the dataset available from the [`{coronavirus}`](https://github.com/RamiKrispin/coronavirus){target="_blank"} R package. Make sure to download the development version of the package to have the latest data:

```
install.packages("devtools")
devtools::install_github("RamiKrispin/coronavirus")
```

The data and dashboard are refreshed on a daily basis.

The raw data is pulled from the Johns Hopkins University Center for Systems Science and Engineering (JHU CCSE) Coronavirus [repository](https://github.com/RamiKrispin/coronavirus-csv){target="_blank"}.




 

**Update**

The data is as of `r format(max(coronavirus$date), "%A %B %d, %Y")` and the dashboard has been updated on `r format(Sys.time(), "%A %B %d, %Y")`.