Datos y librerias
library(ggplot2)
d <- data.frame(Fecha = paste0(c("06", "07", "08", "09", "10", "11", "12",
"13", "14", "15", "16", "17", "18", "19",
"20", "21", "22", "23"), "/03/2020"),
y = c(1, 2, 9, 11, 13, 17, 22, 38, 43, 71, 86, 117, 155,
234, 263, 318, 363, 395))
d$Fecha <- as.Date(d$Fecha, "%d/%m/%Y")
Modelo exponencial
temp <- d[1:14, ]
model <- lm(log(y) ~ Fecha, data = temp)
pred <- data.frame(Fecha = seq(as.Date.numeric(0, d$Fecha[1]),
as.Date.numeric(17, d$Fecha[1]), 1))
pred.mod <- predict(model, newdata = pred)
pred$y <- exp(pred.mod)
Grafico comparativo
ggplot(d, aes(x = Fecha)) +
geom_point(aes(y = y, colour = "Observado")) +
geom_smooth(aes(y = y, colour = "Observado"),
method = "auto", span = .75) +
geom_smooth(data = pred, aes(y = y, colour = "Modelo exponencial"),
method = "auto", span = .75) +
labs(x = "Fecha", y = "Número de casos identificados", color = "") +
theme(legend.position = "bottom",
legend.box = "vertical")
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'
