##. Loading dataset into the r environment
library(knitr); library(rmarkdown);
library(rstanarm); library(rstan);
library(tidybayes);
library(tidyverse);
library(easystats); ## # Attaching packages
## ✔ insight 0.8.2 ✔ bayestestR 0.5.2
## ✔ performance 0.4.4 ✔ parameters 0.6.0
## ✔ see 0.4.1 ✔ effectsize 0.2.0
## ✔ correlation 0.1.0 ✔ estimate 0.1.0
## ✔ report 0.1.0
library(rmarkdown);
library(bayesplot); library(projpred); library(loo)
library(haven); library(shinystan)
library(broom); library(ggmcmc)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)
library(haven)
#salience = salience
#salience <- read_dta("/Users/Karthy/Downloads/salience.dta")
#head(salience[, 1:10])
#glimpse(salience[, 1:10])##.Subsetting the data to replicate Gibler’s 2007 model
##. Descriptive Statistics of major variables in the model
library(skimr)
vars = c("jointdem", "icowsal", "settle", "smallgdp", "samecol", "civwar", "lastmid", "logmntpct","capratio")
skim(salience[, vars])| Name | salience[, vars] |
| Number of rows | 41223 |
| Number of columns | 9 |
| _______________________ | |
| Column type frequency: | |
| character | 1 |
| numeric | 8 |
| ________________________ | |
| Group variables | None |
Variable type: character
| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---|---|---|---|---|---|---|---|
| settle | 0 | 1 | 1 | 1 | 0 | 2 | 0 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| jointdem | 8322 | 0.80 | 0.22 | 0.41 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ▇▁▁▁▂ |
| icowsal | 8260 | 0.80 | 1.63 | 3.32 | 0.00 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
| smallgdp | 24839 | 0.40 | 7.35 | 1.01 | 3.87 | 6.57 | 7.29 | 8.07 | 9.83 | ▁▂▇▆▂ |
| samecol | 0 | 1.00 | 0.25 | 0.43 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ▇▁▁▁▂ |
| civwar | 0 | 1.00 | 0.01 | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ▇▁▁▁▁ |
| lastmid | 8260 | 0.80 | 24.17 | 29.74 | 0.00 | 5.00 | 14.00 | 32.00 | 185.00 | ▇▁▁▁▁ |
| logmntpct | 24654 | 0.40 | 0.33 | 0.30 | 0.00 | 0.07 | 0.27 | 0.57 | 1.00 | ▇▃▃▂▂ |
| capratio | 2222 | 0.95 | 0.29 | 0.27 | 0.00 | 0.06 | 0.20 | 0.47 | 1.00 | ▇▃▂▂▁ |
## # A tibble: 9 x 11
## name type distinct_values minimum median maximum mean sd
## <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 join… nume… 2 0. 0 1 0.220 0.414
## 2 icow… nume… 12 0. 0 12 1.63 3.32
## 3 sett… nume… 2 0. 0 1 0.329 0.470
## 4 smal… nume… 3578 3.87e+0 7.29 9.83 7.35 1.01
## 5 same… nume… 2 0. 0 1 0.246 0.430
## 6 civw… nume… 2 0. 0 1 0.0135 0.115
## 7 last… nume… 186 0. 14 185 24.2 29.7
## 8 logm… nume… 355 0. 0.267 1 0.331 0.299
## 9 capr… nume… 38981 3.98e-5 0.203 1.00 0.291 0.271
## # … with 3 more variables: na_proportion <dbl>, count <chr>,
## # sample_values <chr>
## TableGrob (3 x 3) "arrange": 6 grobs
## z cells name grob
## jointdem 1 (1-1,1-1) arrange gtable[layout]
## icowsal 2 (1-1,2-2) arrange gtable[layout]
## settle 3 (1-1,3-3) arrange gtable[layout]
## samecol 4 (2-2,1-1) arrange gtable[layout]
## civwar 5 (2-2,2-2) arrange gtable[layout]
## 6 (3-3,1-3) arrange text[GRID.text.203]
##. Visualizing correlations among the major variables. The correlation plot visualizes the possible correlation between major variables used in the study.
##.Bayesian regression analysis- Model-1 (logistic regression) I test whether settled border increases the chances of bordering countries becoming democracies. For that purpose, I use the rstanarm package, which utilizes Stan program to fit the bayesian model. It uses the Hamiltonian Monte Carlo Sampling to fit the model. It is a single variable model.
mod1 = stan_glm(formula = jointdem ~ settle, chains =4, iter = 2000, warmup = 250, family = binomial(link = "logit"), data = salience, refresh = 0)
summary(mod1)##
## Model Info:
## function: stan_glm
## family: binomial [logit]
## formula: jointdem ~ settle
## algorithm: sampling
## sample: 7000 (posterior sample size)
## priors: see help('prior_summary')
## observations: 32901
## predictors: 2
##
## Estimates:
## mean sd 10% 50% 90%
## (Intercept) -1.2 0.0 -1.2 -1.2 -1.1
## settle -0.3 0.0 -0.4 -0.3 -0.3
##
## Fit Diagnostics:
## mean sd 10% 50% 90%
## mean_PPD 0.2 0.0 0.2 0.2 0.2
##
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
##
## MCMC diagnostics
## mcse Rhat n_eff
## (Intercept) 0.0 1.0 4649
## settle 0.0 1.0 4498
## mean_PPD 0.0 1.0 4965
## log-posterior 0.0 1.0 3511
##
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
## Inference for the input samples (4 chains: each with iter = 2000; warmup = 0):
##
## Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS
## (Intercept) -1.2 -1.2 -1.1 -1.2 0 1 4665 4514
## settle -0.4 -0.3 -0.3 -0.3 0 1 4528 4432
## mean_PPD 0.2 0.2 0.2 0.2 0 1 4970 5641
## log-posterior -17271.6 -17269.4 -17268.7 -17269.7 1 1 3596 4142
##
## For each parameter, Bulk_ESS and Tail_ESS are crude measures of
## effective sample size for bulk and tail quantities respectively (an ESS > 100
## per chain is considered good), and Rhat is the potential scale reduction
## factor on rank normalized split chains (at convergence, Rhat <= 1.05).
##Hamiltonian montecarlo sampling diagnostics suggests the model has not many glaring issues during fitting
check_hmc_diagnostics(mod1$stanfit)##
## Divergences:
##
## Tree depth:
##
## Energy:
## 5% 95%
## (Intercept) -1.1812979 -1.1288610
## settle -0.3709075 -0.2772931
## # Highest Density Interval
##
## Parameter | 90% HDI
## ----------------------------
## (Intercept) | [-1.18, -1.13]
## settle | [-0.37, -0.28]
This section describes the fit of the bayesian model by examining the MCMC (Monte Carlo Marko Chains) convergence in the model. As one can see from the model, the convergence fits better with not much divergences of the multiple chains. First, I visualize the plotting of the intercept and the single variabl in the model: settled borders variable. Followed by that, I ran an auto-correlation plot to check whether there is much correlation between samples. Since HMC uses dependent sampling, the fitted model should not supposed to have a lot of independence. An imperfect autocorrelation plot will have a scattered appearance of various samples.Thus, the autocorrelation plot suggests the model has no autocorrelation issues. Also, the trace plot for the model indicates the model has good matching with various samples. As one can observe from the traceplot graph(3rd graph), there is good matching of various chains in the model. As before suggested by the HMC (Hamiltonian Monte Carlo) diagnostics and Rhat score of one, the model suffers from no divergences of chains during model fitting.
In the model, I included the salience, the Territorial Salience, variable in the model. The variable has a negative relationship with the presence of joint democracies. The presence of salience decreases the likelihood of joint democracies. The model, like the previous one, has no issues with divergence. The HMS diagnostics tests suggest there are no inherent issues with the model fitting or during the sampling process.
mod2 = stan_glm(formula = jointdem ~ settle + icowsal, chains =4, iter = 1000, warmup = 250, family = binomial(link = "logit"), data = salience, refresh = 0)
summary(mod2)##
## Model Info:
## function: stan_glm
## family: binomial [logit]
## formula: jointdem ~ settle + icowsal
## algorithm: sampling
## sample: 3000 (posterior sample size)
## priors: see help('prior_summary')
## observations: 26832
## predictors: 3
##
## Estimates:
## mean sd 10% 50% 90%
## (Intercept) -1.5 0.0 -1.5 -1.5 -1.4
## settle 0.1 0.0 0.0 0.1 0.1
## icowsal -0.1 0.0 -0.1 -0.1 -0.1
##
## Fit Diagnostics:
## mean sd 10% 50% 90%
## mean_PPD 0.2 0.0 0.2 0.2 0.2
##
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
##
## MCMC diagnostics
## mcse Rhat n_eff
## (Intercept) 0.0 1.0 2512
## settle 0.0 1.0 2672
## icowsal 0.0 1.0 2588
## mean_PPD 0.0 1.0 2262
## log-posterior 0.0 1.0 1406
##
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
## Inference for the input samples (4 chains: each with iter = 1000; warmup = 0):
##
## Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS
## (Intercept) -1.5 -1.5 -1.4 -1.5 0.0 1 2542 1892
## settle 0.0 0.1 0.1 0.1 0.0 1 2637 2061
## icowsal -0.1 -0.1 -0.1 -0.1 0.0 1 2628 1963
## mean_PPD 0.2 0.2 0.2 0.2 0.0 1 2282 2322
## log-posterior -12432.9 -12430.2 -12429.2 -12430.5 1.2 1 1430 1925
##
## For each parameter, Bulk_ESS and Tail_ESS are crude measures of
## effective sample size for bulk and tail quantities respectively (an ESS > 100
## per chain is considered good), and Rhat is the potential scale reduction
## factor on rank normalized split chains (at convergence, Rhat <= 1.05).
## mean se_mean sd 2.5%
## (Intercept) -1.451821e+00 4.607438e-04 0.023210818 -1.496372e+00
## settle 6.117146e-02 6.232294e-04 0.031992404 -3.323830e-03
## icowsal -7.615104e-02 1.086225e-04 0.005549431 -8.724073e-02
## mean_PPD 1.771975e-01 6.790552e-05 0.003241624 1.708399e-01
## log-posterior -1.243053e+04 3.234220e-02 1.214428085 -1.243370e+04
## 25% 50% 75% 97.5% n_eff
## (Intercept) -1.467701e+00 -1.451065e+00 -1.436375e+00 -1.405884e+00 2513
## settle 4.086702e-02 6.175227e-02 8.312635e-02 1.229505e-01 2672
## icowsal -7.994660e-02 -7.622923e-02 -7.244241e-02 -6.533743e-02 2589
## mean_PPD 1.750149e-01 1.771765e-01 1.793754e-01 1.835514e-01 2263
## log-posterior -1.243104e+04 -1.243023e+04 -1.242964e+04 -1.242918e+04 1407
## Rhat valid Q5 Q50 Q95
## (Intercept) 1.0007175 1 -1.490237e+00 -1.451065e+00 -1.414646e+00
## settle 1.0023656 1 7.737261e-03 6.175227e-02 1.133695e-01
## icowsal 0.9998046 1 -8.506677e-02 -7.622923e-02 -6.703335e-02
## mean_PPD 1.0019445 1 1.717725e-01 1.771765e-01 1.826196e-01
## log-posterior 1.0023500 1 -1.243287e+04 -1.243023e+04 -1.242923e+04
## MCSE_Q2.5 MCSE_Q25 MCSE_Q50 MCSE_Q75 MCSE_Q97.5
## (Intercept) 0.0007631618 6.367441e-04 5.152920e-04 6.632879e-04 0.0012164650
## settle 0.0016379871 9.135333e-04 6.262725e-04 7.199390e-04 0.0016053683
## icowsal 0.0002336172 1.196279e-04 1.297373e-04 1.747803e-04 0.0004125261
## mean_PPD 0.0001304413 9.317233e-05 7.453787e-05 7.453787e-05 0.0001304413
## log-posterior 0.1884294098 5.668871e-02 3.306831e-02 1.873379e-02 0.0105975363
## MCSE_SD Bulk_ESS Tail_ESS
## (Intercept) 3.258325e-04 2542 1892
## settle 4.530872e-04 2637 2061
## icowsal 7.681632e-05 2628 1963
## mean_PPD 4.807250e-05 2282 2322
## log-posterior 2.287412e-02 1430 1925
##
## Divergences:
## 0 of 3000 iterations ended with a divergence.
##
## Tree depth:
## 0 of 3000 iterations saturated the maximum tree depth of 15.
##
## Energy:
## E-BFMI indicated no pathological behavior.
##
## Drawing from prior...
##Point-estimates of the model: it includes the mean, median and the MAP(Maximum A'Posterior) of the model.
res1 <- point_estimate(mod2)
plot(res1)##Visualizing the posterior density interval (credibility interval)
res2 <- hdi(mod2, ci = c(0.5, 0.75, 0.89, 0.95))
plot(res2)## Computation of Bayes factors: sampling priors, please wait...
## Loading required namespace: logspline
## Warning in logspline::logspline(posterior): too much data close together
## Warning in logspline::logspline(posterior): re-ran with oldlogspline
## Warning in logspline::logspline(x): too much data close together
## Warning in logspline::logspline(x): re-ran with oldlogspline
##Region of Practical Equaivalence or the ROPE region
res4 <- rope(mod2, ci = c(0.9, 0.95))
plot(res4)## Picking joint bandwidth of 0.00269
## Warning: Removed 658 rows containing non-finite values (stat_density_ridges).
This model includes a pertinent economic variable, gdp per capita, that could explain the evolution of joint democracies. This model also includes border strength variables such as capability ratio, years since the last MID outbreak, duration of the dyad and so on. (Refer: Gibler 2007).
mod3 = stan_glm(formula = jointdem ~ settle + icowsal + smallgdp + lastmid + capratio + durdyad, chains =4, iter = 2000, warmup = 250, family = binomial(link = "logit"), data = salient, refresh = 0)
summary(mod3)##
## Model Info:
## function: stan_glm
## family: binomial [logit]
## formula: jointdem ~ settle + icowsal + smallgdp + lastmid + capratio +
## durdyad
## algorithm: sampling
## sample: 7000 (posterior sample size)
## priors: see help('prior_summary')
## observations: 9450
## predictors: 7
##
## Estimates:
## mean sd 10% 50% 90%
## (Intercept) -17.0 0.4 -17.6 -17.0 -16.5
## settle 0.5 0.1 0.4 0.5 0.7
## icowsal 0.0 0.0 0.0 0.0 0.0
## smallgdp 1.9 0.1 1.8 1.9 1.9
## lastmid 0.0 0.0 0.0 0.0 0.0
## capratio -0.4 0.1 -0.6 -0.4 -0.2
## durdyad 0.0 0.0 0.0 0.0 0.0
##
## Fit Diagnostics:
## mean sd 10% 50% 90%
## mean_PPD 0.2 0.0 0.2 0.2 0.2
##
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
##
## MCMC diagnostics
## mcse Rhat n_eff
## (Intercept) 0.0 1.0 3675
## settle 0.0 1.0 5649
## icowsal 0.0 1.0 6047
## smallgdp 0.0 1.0 3904
## lastmid 0.0 1.0 5989
## capratio 0.0 1.0 6015
## durdyad 0.0 1.0 5727
## mean_PPD 0.0 1.0 7382
## log-posterior 0.0 1.0 3069
##
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
## Inference for the input samples (4 chains: each with iter = 2000; warmup = 0):
##
## Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS
## (Intercept) -17.8 -17.0 -16.3 -17.0 0.4 1 3697 4825
## settle 0.3 0.5 0.7 0.5 0.1 1 5661 4819
## icowsal 0.0 0.0 0.0 0.0 0.0 1 6073 5544
## smallgdp 1.8 1.9 1.9 1.9 0.1 1 3929 5129
## lastmid 0.0 0.0 0.0 0.0 0.0 1 6013 5186
## capratio -0.6 -0.4 -0.2 -0.4 0.1 1 6061 4520
## durdyad 0.0 0.0 0.0 0.0 0.0 1 5600 5117
## mean_PPD 0.2 0.2 0.2 0.2 0.0 1 7437 6509
## log-posterior -2528.3 -2524.4 -2522.3 -2524.8 1.9 1 3205 4456
##
## For each parameter, Bulk_ESS and Tail_ESS are crude measures of
## effective sample size for bulk and tail quantities respectively (an ESS > 100
## per chain is considered good), and Rhat is the potential scale reduction
## factor on rank normalized split chains (at convergence, Rhat <= 1.05).
## mean se_mean sd 2.5%
## (Intercept) -1.704534e+01 7.231475e-03 0.4399890621 -1.792243e+01
## settle 5.289383e-01 1.612268e-03 0.1213965804 2.852344e-01
## icowsal 2.890979e-02 1.507604e-04 0.0117481697 6.307100e-03
## smallgdp 1.863280e+00 8.224589e-04 0.0515425385 1.764021e+00
## lastmid 1.269685e-02 1.752941e-05 0.0013589728 1.002315e-02
## capratio -3.924435e-01 1.668183e-03 0.1297988148 -6.504382e-01
## durdyad 3.039272e-03 1.041010e-05 0.0007787774 1.506502e-03
## mean_PPD 1.614187e-01 4.802559e-05 0.0041334938 1.534392e-01
## log-posterior -2.524754e+03 3.381714e-02 1.8759881592 -2.529218e+03
## 25% 50% 75% 97.5% n_eff
## (Intercept) -1.733891e+01 -1.704129e+01 -1.675017e+01 -1.619753e+01 3672
## settle 4.484956e-01 5.287606e-01 6.107025e-01 7.637310e-01 5651
## icowsal 2.084717e-02 2.880917e-02 3.707350e-02 5.197817e-02 6048
## smallgdp 1.828362e+00 1.862972e+00 1.898137e+00 1.966238e+00 3902
## lastmid 1.178420e-02 1.271333e-02 1.361789e-02 1.532951e-02 5990
## capratio -4.788604e-01 -3.904964e-01 -3.043793e-01 -1.397622e-01 6018
## durdyad 2.517808e-03 3.042298e-03 3.577833e-03 4.549197e-03 5588
## mean_PPD 1.586243e-01 1.613757e-01 1.641270e-01 1.697354e-01 7384
## log-posterior -2.525768e+03 -2.524418e+03 -2.523402e+03 -2.522122e+03 3063
## Rhat valid Q5 Q50 Q95
## (Intercept) 1.001351 1 -1.777368e+01 -1.704129e+01 -1.632918e+01
## settle 1.000639 1 3.268329e-01 5.287606e-01 7.277428e-01
## icowsal 1.000242 1 9.795861e-03 2.880917e-02 4.807407e-02
## smallgdp 1.001135 1 1.778852e+00 1.862972e+00 1.949518e+00
## lastmid 1.000109 1 1.043836e-02 1.271333e-02 1.489488e-02
## capratio 1.000822 1 -6.072416e-01 -3.904964e-01 -1.804681e-01
## durdyad 1.000472 1 1.753799e-03 3.042298e-03 4.315895e-03
## mean_PPD 1.000271 1 1.547090e-01 1.613757e-01 1.682540e-01
## log-posterior 1.001339 1 -2.528254e+03 -2.524418e+03 -2.522339e+03
## MCSE_Q2.5 MCSE_Q25 MCSE_Q50 MCSE_Q75 MCSE_Q97.5
## (Intercept) 1.993227e-02 1.002723e-02 7.285251e-03 8.268266e-03 1.441800e-02
## settle 4.482032e-03 1.972999e-03 2.117089e-03 2.242780e-03 3.604682e-03
## icowsal 5.236992e-04 1.812256e-04 1.864408e-04 2.371631e-04 4.245076e-04
## smallgdp 2.024980e-03 1.054862e-03 8.474534e-04 1.104072e-03 1.930038e-03
## lastmid 5.132472e-05 2.221922e-05 2.050555e-05 2.765149e-05 4.580265e-05
## capratio 4.362591e-03 2.150402e-03 2.204191e-03 1.905483e-03 4.216249e-03
## durdyad 2.036545e-05 1.264303e-05 1.182988e-05 1.355986e-05 2.021594e-05
## mean_PPD 1.587302e-04 1.058201e-04 5.291005e-05 1.058201e-04 1.587302e-04
## log-posterior 1.307794e-01 5.456179e-02 2.935567e-02 3.419047e-02 2.610160e-02
## MCSE_SD Bulk_ESS Tail_ESS
## (Intercept) 5.113828e-03 3697 4825
## settle 1.144924e-03 5661 4819
## icowsal 1.093636e-04 6073 5544
## smallgdp 5.816095e-04 3929 5129
## lastmid 1.239577e-05 6013 5186
## capratio 1.242405e-03 6061 4520
## durdyad 7.384539e-06 5600 5117
## mean_PPD 3.401674e-05 7437 6509
## log-posterior 2.391535e-02 3205 4456
##.Model-3: Post-Estimation of the model
##Point-estimates of the model: it includes the mean, median and the MAP(Maximum A'Posterior) of the model.
res1 <- point_estimate(mod3)
plot(res1)##Visualizing the posterior density interval (credibility interval)
res2 <- hdi(mod3, ci = c(0.5, 0.75, 0.89, 0.95))
plot(res2)## Visualizing the support interval of the model with priors
res3 <- si(mod3)
plot(res3) +scale_color_metro(palette = "ice") +
scale_fill_metro(palette = "ice")##Region of Practical Equaivalence or the ROPE region
res4 <- rope(mod3, ci = c(0.9, 0.95))
plot(res4)##
## Computed from 7000 by 9450 log-likelihood matrix
##
## Estimate SE
## elpd_loo -2519.4 57.4
## p_loo 7.3 0.2
## looic 5038.7 114.9
## ------
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.
mod4 = stan_glm(formula = jointdem ~ settle + icowsal + durdyad + smallgdp + lastmid + capratio + samecol, chains = 4, iter = 2000, warmup = 250, family = binomial(link = "logit"), data = salient, refresh = 0)
summary(mod4)##
## Model Info:
## function: stan_glm
## family: binomial [logit]
## formula: jointdem ~ settle + icowsal + durdyad + smallgdp + lastmid +
## capratio + samecol
## algorithm: sampling
## sample: 7000 (posterior sample size)
## priors: see help('prior_summary')
## observations: 9450
## predictors: 8
##
## Estimates:
## mean sd 10% 50% 90%
## (Intercept) -15.8 0.5 -16.4 -15.8 -15.2
## settle 0.5 0.1 0.3 0.5 0.6
## icowsal 0.1 0.0 0.1 0.1 0.1
## durdyad 0.0 0.0 0.0 0.0 0.0
## smallgdp 1.8 0.1 1.7 1.8 1.9
## lastmid 0.0 0.0 0.0 0.0 0.0
## capratio -0.6 0.1 -0.8 -0.6 -0.4
## samecol -1.2 0.1 -1.3 -1.2 -1.1
##
## Fit Diagnostics:
## mean sd 10% 50% 90%
## mean_PPD 0.2 0.0 0.2 0.2 0.2
##
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
##
## MCMC diagnostics
## mcse Rhat n_eff
## (Intercept) 0.0 1.0 5144
## settle 0.0 1.0 6425
## icowsal 0.0 1.0 5782
## durdyad 0.0 1.0 6794
## smallgdp 0.0 1.0 5231
## lastmid 0.0 1.0 7197
## capratio 0.0 1.0 7554
## samecol 0.0 1.0 5990
## mean_PPD 0.0 1.0 8076
## log-posterior 0.0 1.0 3315
##
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).
## Inference for the input samples (4 chains: each with iter = 2000; warmup = 0):
##
## Q5 Q50 Q95 Mean SD Rhat Bulk_ESS Tail_ESS
## (Intercept) -16.6 -15.8 -15.0 -15.8 0.5 1 5189 4413
## settle 0.3 0.5 0.7 0.5 0.1 1 6462 4875
## icowsal 0.0 0.1 0.1 0.1 0.0 1 5829 5305
## durdyad 0.0 0.0 0.0 0.0 0.0 1 6832 5826
## smallgdp 1.7 1.8 1.9 1.8 0.1 1 5276 4855
## lastmid 0.0 0.0 0.0 0.0 0.0 1 7235 5517
## capratio -0.8 -0.6 -0.4 -0.6 0.1 1 7637 4589
## samecol -1.4 -1.2 -1.1 -1.2 0.1 1 5997 5325
## mean_PPD 0.2 0.2 0.2 0.2 0.0 1 8120 6429
## log-posterior -2446.9 -2442.7 -2440.4 -2443.1 2.0 1 3369 4608
##
## For each parameter, Bulk_ESS and Tail_ESS are crude measures of
## effective sample size for bulk and tail quantities respectively (an ESS > 100
## per chain is considered good), and Rhat is the potential scale reduction
## factor on rank normalized split chains (at convergence, Rhat <= 1.05).
## # A tibble: 8 x 3
## term estimate std.error
## <chr> <dbl> <dbl>
## 1 (Intercept) -15.8 0.462
## 2 settle 0.478 0.113
## 3 icowsal 0.0655 0.0118
## 4 durdyad 0.000174 0.000790
## 5 smallgdp 1.80 0.0539
## 6 lastmid 0.0112 0.00132
## 7 capratio -0.590 0.138
## 8 samecol -1.21 0.0933
## # A tibble: 9,450 x 12
## .rownames jointdem settle icowsal durdyad smallgdp lastmid capratio samecol
## <chr> <dbl> <dbl+l> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 1 1 [Set… 5 97 9.38 54 0.0768 1
## 2 2 1 1 [Set… 5 97 9.53 3 0.0842 1
## 3 3 1 1 [Set… 0 97 9.13 48 0.0587 1
## 4 4 1 1 [Set… 0 97 8.62 28 0.0427 1
## 5 5 1 1 [Set… 0 97 8.88 39 0.0560 1
## 6 6 1 1 [Set… 0 97 9.12 47 0.0576 1
## 7 7 1 1 [Set… 5 97 9.52 3 0.0859 1
## 8 8 1 1 [Set… 5 97 9.27 52 0.0707 1
## 9 9 1 1 [Set… 0 97 9.17 49 0.0561 1
## 10 10 1 1 [Set… 5 97 9.32 53 0.0729 1
## # … with 9,440 more rows, and 3 more variables: .fitted <dbl>, .se.fit <dbl>,
## # .resid <dbl>
##Point-estimates of the model: it includes the mean, median and the MAP(Maximum A'Posterior) of the model.
res1 <- point_estimate(mod4)
plot(res1)##Visualizing the posterior density interval (credibility interval)
res2 <- hdi(mod4, ci = c(0.5, 0.75, 0.89, 0.95))
plot(res2)## Computation of Bayes factors: sampling priors, please wait...
## Warning in logspline::logspline(posterior): Not all models could be fitted
## Warning in logspline::logspline(x): Not all models could be fitted
##Region of Practical Equaivalence or the ROPE region
res4 <- rope(mod4, ci = c(0.9, 0.95))
plot(res4)## Picking joint bandwidth of 0.00719
## Warning: Removed 5383 rows containing non-finite values (stat_density_ridges).
##
## Computed from 7000 by 9450 log-likelihood matrix
##
## Estimate SE
## elpd_loo -2436.9 58.9
## p_loo 7.9 0.2
## looic 4873.8 117.8
## ------
## Monte Carlo SE of elpd_loo is 0.0.
##
## All Pareto k estimates are good (k < 0.5).
## See help('pareto-k-diagnostic') for details.