A primeira questão é que o número de casos em valor absoluto, pouco ou nada se refere ao verdadeiro poder destrutivo do contágio em cada país. Afinal, o número da população importa para termos uma ideia da importância relativa de cada pessoa para aquele país, e sua probabilidade de contágio.
Apenas em termos ilustrativos, os dois mapas abaixo representam em termos absolutos e termos relativos o imapcto da COVID19
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
## Loading required package: sp
## ### Welcome to rworldmap ###
## For a short introduction type : vignette('rworldmap')
## 123 codes from your data successfully matched countries in the map
## 48 codes from your data failed to match with a country code in the map
## 120 codes from the map weren't represented in your data
Agora em termos relativos
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
## 123 codes from your data successfully matched countries in the map
## 48 codes from your data failed to match with a country code in the map
## 120 codes from the map weren't represented in your data
A taxa de crescimento deve obedecer o mesmo padrão do exercício anterior. Qual o percentual da população que está de fato afetada por este virus.
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
Graficamente em valores absolutos
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
## [1] "Total de Infectados" "335955"
Graficamente teremos em valores relativos
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
## [1] "Total de Infectados" "335955"
## [1] "Iceland" "Andorra" "Luxembourg" "Italy"
## [5] "Liechtenstein" "Switzerland" "Spain" "Monaco"
## [9] "Norway" "Austria"
Os modelos epidemilógicos mais simples assumem 4 equações para casos . Tem-se a seguinte configuração de eq. diferencial.
\[\begin{aligned} \frac{dS}{dt} & = -\frac{\beta IS}{N}\\ \\ \frac{dE}{dt} & = \frac{\beta IS}{N} - \kappa E\\ \\ \frac{dI}{dt} & = \kappa E - \gamma I\\ \\ \frac{dR}{dt} & = \gamma I \end{aligned}\]Colocando no modelo
Para os países com o pior nível.
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
Para o Brasil temos a seguinte configuração
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
Para o Ceará temos a seguinte configuração
library(readxl)
ceara <- read_excel("COVID-19_CEARA.xlsx")
SIR <- function(time, state, parameters) {
par <- as.list(c(state, parameters))
with(par, {
dS <- -beta/N * I * S
dI <- beta/N * I * S - gamma * I
dR <- gamma * I
list(c(dS, dI, dR))
})
}
Infected <- as.numeric(ceara$Confirmados)
Day <- 1:(length(Infected))
N <- ceara$Pop
old <- par(mfrow = c(1, 2))
plot(Day, Infected, type ="b")
plot(Day, Infected, log = "y")
## Warning in xy.coords(x, y, xlabel, ylabel, log): 11 y values <= 0 omitted
## from logarithmic plot
abline(lm(log10(Infected+exp(1)) ~ Day))
title(paste("Casos Confirmados no Ceará"), outer = TRUE, line = -2)
library(wbstats)
library(lubridate)
pop<- wb(country = "all", indicator = "SP.POP.TOTL", mrv = 1)
library(htmlTable)
jhu_url<- paste("https://raw.githubusercontent.com/CSSEGISandData/",
"COVID-19/master/csse_covid_19_data/", "csse_covid_19_time_series/",
"time_series_19-covid-Confirmed.csv", sep = "")
dados<-read_csv(jhu_url)
## Parsed with column specification:
## cols(
## .default = col_double(),
## `Province/State` = col_character(),
## `Country/Region` = col_character()
## )
## See spec(...) for full column specifications.
paises<-factor(dados$`Country/Region`)
paises<-levels(paises)
dados2<-NULL
library(xts)
for (i in paises){
c<-subset(dados,dados$`Country/Region`==i)
c1<-t(c)
if (dim(c)[1]<2) {
c1<-as.xts(x=as.numeric(c1[5:length(c),]),order.by= mdy(colnames(c))[5:length(c)])
} else {
c1<-c1[5:length(c),]
c1<-as.data.frame(apply(c1, 2, as.numeric))
dim(c1)
c1<-as.xts(x=apply(c1, 1, sum),order.by= mdy(colnames(c))[5:length(c)])
}
colnames(c1)<-i
dados2<-cbind(dados2,c1)
}
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
## Warning: 4 failed to parse.
nomes<-names(sort(-apply(tail(dados2,1),2,sum)))[1:10]
library("xts")
paises2<-colnames(dados2)
infec<-NULL
for (i in paises2){
infec<-cbind(infec,as.numeric(subset(dados2,select=i)))
}
which(paises2=="Brazil")
## [1] 22
dados2<-as.data.frame(dados2)
plot(1:length(dados2[dados2[,1]>0,1]),dados2[dados2[,1]>0,1], type="l", xlim=c(0,60), ylim=c(0,80000), ylab=NA,xlab=NA)
for( i in 2:171){
points(1:length(dados2[dados2[,i]>0,1]),dados2[dados2[,i]>0,i],type="l", col=i)
}
points(1:length(dados2[dados2[,22]>0,1]),dados2[dados2[,22]>0,22],type="l", col=i, cex=20)
arrows(60,80000, 26, 1563)
text(40,40000, "Brazil", srt=40)
title("Casos desde a Primeira Incidência")
Se for citar este estudo utilize a seguinte referência. Salvador (2020)
Salvador, Pedro Ivo Camacho Alves. 2020. “Análise Quantitativa Da Covid19.” rPUBS 1: 1. https://rpubs.com/pedrosalvador/584906.