library(FactoMineR)
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
library(ggplot2)
library(plotly)
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
## last_plot
## The following object is masked from 'package:stats':
##
## filter
## The following object is masked from 'package:graphics':
##
## layout
library(rpart)
library(rpart.plot)
library(tidyverse)
## -- Attaching packages ------------------------------------------------------------------------ tidyverse 1.3.0 --
## v tibble 2.1.3 v dplyr 0.8.5
## v tidyr 1.0.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## v purrr 0.3.3
## -- Conflicts --------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks plotly::filter(), stats::filter()
## x dplyr::first() masks xts::first()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks xts::last()
library(dplyr)
library(tidyr)
library(FactoMineR)
library(DT)
library(rpivotTable)
library(treemap)
library(treemapify)
library(tidyverse)
library(viridis)
## Loading required package: viridisLite
library(gridExtra)
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:dplyr':
##
## combine
library(magrittr)
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
library(ggforce)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
library(PerformanceAnalytics)
data Editing
#Checking data
a<-read.csv("C://Users/md/Desktop/Research/Corona.csv")
a$Total.Cases<-as.numeric(a$Total.Cases)
a$New.Cases<-as.numeric(a$New.Cases)
a$Total.Deaths<-as.numeric(a$Total.Deaths)
a$Total.Recovered<-as.numeric(a$Total.Recovered)
a$Active.Cases<-as.numeric(a$Active.Cases)
a$Serious..Critical<-as.numeric(a$Serious..Critical)
a$Tot.Cases..1M.pop<-as.numeric(a$Tot.Cases..1M.pop)
datatable(a)
Correlation Matrix
chart.Correlation(a[,2:9], histogram=TRUE, pch=25)

Line chart
r<-ggplot(data = a,aes(x = Total.Cases, y = Total.Deaths,colour="Red"))+
geom_line()
ggplotly(r)
n<-ggplot(data = a,aes(x = Total.Cases, y = Total.Recovered,colour="Red"))+
geom_line()
ggplotly(n)
o<-ggplot(data = a,aes(x = Total.Deaths, y = Total.Recovered,colour="Red"))+
geom_line()
ggplotly(o)
#Arrange line plot
grid.arrange(r,n,o,ncol=1)

Scatter Diagram
# Scatter Diagram og total cases and Total.Recovered
d4<-ggplot(
data = a,
aes(x = Total.Cases, y = Total.Recovered)) +
geom_point(aes(colour = Country..Other)) +
geom_smooth(method = "lm") +
ggtitle("Total.Cases vs. New.Cases") +
xlab("Total.Cases") +
ylab("New.Cases")
ggplotly(d4+scale_colour_viridis_d(option = "inferno"))
## `geom_smooth()` using formula 'y ~ x'
# Scatter Diagram Total Death and Tot.Cases..1M.pop
d5<-ggplot(
data = a,
aes(x = New.Deaths, y =Tot.Cases..1M.pop)) +
geom_point(aes(colour = Country..Other)) +
geom_smooth(method = "lm") +
ggtitle("Total.Deaths vs. Total.Recovered") +
xlab("Total.Deaths") +
ylab("Total.Recovered")
ggplotly(d5+scale_colour_viridis_d(option = "inferno"))
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 1 rows containing non-finite values (stat_smooth).
#Multiple Linear regression
fi<-ggplot(a)+
geom_jitter(aes(Total.Cases,Total.Recovered,fill=Country..Other), colour="blue") + geom_smooth(aes(Total.Cases,Total.Recovered), method=lm, se=FALSE) +
geom_jitter(aes(Total.Deaths,Serious..Critical,fill=Country..Other), colour="Yellow") + geom_smooth(aes(Total.Deaths,Serious..Critical), method=lm, se=FALSE) +
geom_jitter(aes(Active.Cases,Serious..Critical,fill=Country..Other), colour="skyblue") + geom_smooth(aes(Active.Cases,Serious..Critical), method=lm, se=FALSE) +
geom_jitter(aes(New.Cases,New.Deaths,fill=Country..Other), colour="red") + geom_smooth(aes(New.Cases,New.Deaths), method=lm, se=FALSE) +
labs(x = "Percentage cover (%)", y = "Number of individuals (N)")
ggplotly(fi)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
pie chart
library(moonBook)
library(webr)
PieDonut(a,aes(Total.Cases,Total.Recovered),explode=1,explodeDonut=TRUE)
## Warning: Ignoring unknown aesthetics: explode

PieDonut(a,aes(Total.Cases,Total.Recovered),explode=3,r1=0.9,explodeDonut=TRUE,title="Total Case Vs New Case",star=3*pi/2,labelposition=0)
## Warning: Ignoring unknown aesthetics: explode

this Analysis is Prepared by Md. Mahdi hasan, B,Sc.(Hon’s) Department of Statistics, Dhaka College, Dhaka