Variables
merged2 <- merged %>%
remove_rownames %>%
column_to_rownames(var="Nom_Barri") %>%
select("n.tot.V1419","n.esp.V1419","n.ext.V1419","n.ue27-esp.V1419","n.ue27.V1419",
"hotel2019",
"alq.num.V1519","alq.pmq.V1519","alq.pm.V1519",
"tot_ann.V1519","ent.V1519","priv.V1519","shared.V1519","pmedio.V1519","pm_ent.V1519","pm_priv.V1519","pm_sha.V1519",
"RFD.2017",
"tot.comp.V1519","nou.comp.V1519","prot.comp.V1519","usat.comp.V1519","tot.eur.V1519","nou.eur.V1519","usat.eur.V1519","tot.eurm2.V1519","nou.eurm2.V1519","usat.eurm2.V1519"
)
Standardizar los datos
df <- scale(merged2)
Hier
d <- dist(df, method = "euclidean")
#ward hier
res.hc <- hclust(d, method = "ward.D2" )
#plot
plot(res.hc, cex = 0.6, hang = -1)
Cut 3
grp3 <- cutree(res.hc, k = 3)
table(grp3)
## grp3
## 1 2 3
## 59 7 7
plot(res.hc, cex = 0.6)
rect.hclust(res.hc, k = 3, border = 2:5)
Cut 4
grp4 <- cutree(res.hc, k = 4)
table(grp4)
## grp4
## 1 2 3 4
## 59 6 7 1
plot(res.hc, cex = 0.6)
rect.hclust(res.hc, k = 4, border = 2:5)
Cut 5
grp5 <- cutree(res.hc, k = 5)
table(grp5)
## grp5
## 1 2 3 4 5
## 57 2 6 7 1
plot(res.hc, cex = 0.6)
rect.hclust(res.hc, k = 5, border = 2:5)