#
# first R session using math attainment data set
#
## input data
# read in a plain text file with variable names and assign a name to it
dta <- read.table("C:/Users/USER/Desktop/1/math_attainment.txt", header = T)
## checking data
# structure of data
str(dta)
## 'data.frame': 39 obs. of 3 variables:
## $ math2: int 28 56 51 13 39 41 30 13 17 32 ...
## $ math1: int 18 22 44 8 20 12 16 5 9 18 ...
## $ cc : num 328 406 387 167 328 ...
# first 6 rows
head(dta)
## math2 math1 cc
## 1 28 18 328.20
## 2 56 22 406.03
## 3 51 44 386.94
## 4 13 8 166.91
## 5 39 20 328.20
## 6 41 12 328.20
## descriptive statistics
# variable mean
colMeans(dta)
## math2 math1 cc
## 28.76923 15.35897 188.83667
# variable sd
apply(dta, 2, sd)
## math2 math1 cc
## 10.720029 7.744224 84.842513
# correlation matrix
cor(dta)
## math2 math1 cc
## math2 1.0000000 0.7443604 0.6570098
## math1 0.7443604 1.0000000 0.5956771
## cc 0.6570098 0.5956771 1.0000000
## plot data
# specify square plot region
par(pty="s")
# scatter plot of math2 by math1
plot(math2 ~ math1, data=dta, xlim=c(0, 60), ylim=c(0, 60),
xlab="Math score at Year 1", ylab="Math score at Year 2")
# add grid lines
grid()
## regression analysis
# regress math2 by math1
dta.lm <- lm(math2 ~ math1, data=dta)
# show results
summary(dta.lm)
##
## Call:
## lm(formula = math2 ~ math1, data = dta)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.430 -5.521 -0.369 4.253 20.388
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.944 2.607 4.965 1.57e-05 ***
## math1 1.030 0.152 6.780 5.57e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.255 on 37 degrees of freedom
## Multiple R-squared: 0.5541, Adjusted R-squared: 0.542
## F-statistic: 45.97 on 1 and 37 DF, p-value: 5.571e-08
# show anova table
anova(dta.lm)
## Analysis of Variance Table
##
## Response: math2
## Df Sum Sq Mean Sq F value Pr(>F)
## math1 1 2419.6 2419.59 45.973 5.571e-08 ***
## Residuals 37 1947.3 52.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# add regression line
abline(dta.lm, lty=2)
# add plot title
title("Mathematics Attainment")

## diagnostics
# specify maximum plot region
par(pty="m")
#
plot(scale(resid(dta.lm)) ~ fitted(dta.lm),
ylim=c(-3.5, 3.5), type="n",
xlab="Fitted values", ylab="Standardized residuals")
#
text(fitted(dta.lm), scale(resid(dta.lm)), labels=rownames(dta), cex=0.5)
#
grid()
# add a horizontal red dash line
abline(h=0, lty=2, col="red")

## normality check
#
qqnorm(scale(resid(dta.lm)))
qqline(scale(resid(dta.lm)))
grid()

###