The density of minimum value among n independent random variables with an exponential density has mean mu/n, where mu is the mean of exponential density of individual variable.
Here we have mu=1000 and n=100 (100 bulbs)
mu <- 1000
n <- 100
mu/n
## [1] 10
1/(1/10)
## [1] 10
\[f_{Z}(z)=(1/2)λe^{−λ|z|}.\]
Two random numbers in the interval [0,\(\infty\)) with exponential density has the following sum: W = X + Y
\[ fx(x) = fy(x) = \left\{ \begin{array}{ll} \lambda e^{−λx}, & \quad x \geq 0 \\ 0, & \quad otherwise \end{array} \right. \]
\[\left[fw(w) = \int_{-\infty}^{\infty} f_{x}(x) f_{y}(w-x) \; dx\right]\]
If we apply this same logic to Z = \(X_{1}\) − \(X_{2}\) or even Z = A + (-B)
\[\left[fz(z) = \int_{-\infty}^{\infty} f_{a}(a) f_{-b}(z-a) \; da\right]\] \[\left[fz(z) = \int_{-\infty}^{\infty} f_{a}(a) f_{b}(a-z) \; da\right]\]
\[\left[fz(z) = \int_{0}^{\infty} \lambda e^{−λa} \lambda e^{−λ(a-z)} \; da\right]\]
\[\left[\lambda e^{λz} \int_{0}^{\infty} \lambda e^{−2λa} da\right]\]
\[\left. \lambda e^{λz} (-1/2 e^{−2λa)} \right|_{0}^{\infty}\]
Let X be a continuous random variable with mean μ = 10 and variance σ2 = 100/3. Using Chebyshev’s Inequality, find an upper bound for the following probabilities.
cheby <- function(e,variance)
{x = variance/e^2
return (x)
}
(a) P(|X−10|≥2).
variance = 100/3
e <- 2
p <- cheby (e,variance)
p
## [1] 8.333333
(b) P(|X−10|≥5).
e <- 5
p2 <- cheby (e,variance)
p2
## [1] 1.333333
(c) P(|X−10|≥9).
e <- 9
p3 <- cheby (e,variance)
p3
## [1] 0.4115226
(d) P(|X − 10| ≥ 20).
e <- 20
p4 <- cheby (e,variance)
p4
## [1] 0.08333333