\[E[X_i] = \frac{1}{\lambda_i} = 1000\]
\[\lambda_i = \frac{1}{1000}\]
\(X_i\) is exponential so
\[min\{X_1,X_2,...,X_{100}\} \sim exponential(\sum\limits_{i=1}^{100} \lambda_i)\]
\[E[min X_i] = \frac{1}{\frac{1}{10}} = 10\]
\[f_Z(z)=(1/2)\lambda e^{−\lambda|z|}\]
\[f(x_1) = \lambda e^{-\lambda x_1}\]
\[f(x_2) = \lambda e^{-\lambda x_2}\]
\[\lambda^2 e^{-\lambda(x_1 + x_2)}\]
Substitute to get joint density \(Z\) and \(X_2\) \[\lambda^2 e^{-\lambda(z + 2x_2)}\]
When z is positive:
\[\int_{0}^{\infty} \lambda^2 e^{-\lambda(z + 2x_2)} dx = \frac{\lambda}{2} e^{-\lambda z}\]
When z is negative:
\[\int_{-z}^{\infty} \lambda^2 e^{-\lambda(z + 2x_2)} dx = \frac{\lambda}{2} e^{\lambda z}\]
\[f_Z(z) = \frac{1}{2} \lambda e^{\lambda|z|}\]
chebyshev <- function(e, var){
pX = var / e^2
return(pX)
}
var <- 100/3
e <- 2
p <- chebyshev(e, var)
p
## [1] 8.333333
e <- 5
p <- chebyshev(e, var)
p
## [1] 1.333333
e <- 9
p <- chebyshev(e, var)
p
## [1] 0.4115226
e <- 20
p <- chebyshev(e, var)
p
## [1] 0.08333333