Going through exercise 10, we get that in the exponential case, we have a minimum value as E(M) = μ/n, where μ is the mean i.e., 1000, and n is the number of bulbs i.e., 100. Therefore, E(M) = 1000/100 = 10
\[\begin{align} z &= {x_1} - {x_2} \\ {x_2} &= {x_1} - z \\ f_Z(z) &= \int_{-\infty}^{\infty} f_{x_1}(x_1)\; f_{x_2}(x_1-z)\; dx_1 \\ Going\;by\;the\;exponential\;distribution \\ f_X(x) = \lambda e^{-\lambda x} \end{align}\]
Assuming z>0,
\[\begin{align} f_Z(z) &= \int_{0}^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x_1-z)} dx_1 \\ &= \int_{0}^{\infty} \lambda^2 e^{-2\lambda x_1+\lambda z}dx_1 \\ &= \int_{0}^{\infty} \lambda^2 e^{\lambda(-2 x_1+ z)}dx_1 \\ &= \int_{0}^{\infty} \lambda^2 e^{\lambda(z-2 x_1)}dx_1 \\ &= (1/2)\lambda e^{-\lambda(z)} \\ \end{align}\]
According to Chebyshev’s inequality,
\[\begin{align} P(|X-μ|≥E)≤ \frac{σ^2}{E^2} \end{align}\]
var <- 100/3
E <- 2
var/E^2
## [1] 8.333333
var <- 100/3
E <- 5
var/(E^2)
## [1] 1.333333
var <- 100/3
E <- 9
var/(E^2)
## [1] 0.4115226
var <- 100/3
E <- 20
var/E^2
## [1] 0.08333333