In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.
Load the nc data set into our workspace.
We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.
| variable | description |
|---|---|
fage |
father’s age in years. |
mage |
mother’s age in years. |
mature |
maturity status of mother. |
weeks |
length of pregnancy in weeks. |
premie |
whether the birth was classified as premature (premie) or full-term. |
visits |
number of hospital visits during pregnancy. |
marital |
whether mother is married or not married at birth. |
gained |
weight gained by mother during pregnancy in pounds. |
weight |
weight of the baby at birth in pounds. |
lowbirthweight |
whether baby was classified as low birthweight (low) or not (not low). |
gender |
gender of the baby, female or male. |
habit |
status of the mother as a nonsmoker or a smoker. |
whitemom |
whether mom is white or not white. |
## [1] 1000
The Cases in this dataset are the births recorded in the state and there are 1000 cases in our sample.
As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:
## fage mage mature weeks premie
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00 full term:846
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00 premie :152
## Median :30.00 Median :27 Median :39.00 NA's : 2
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## visits marital gained weight
## Min. : 0.0 married :386 Min. : 0.00 Min. : 1.000
## 1st Qu.:10.0 not married:613 1st Qu.:20.00 1st Qu.: 6.380
## Median :12.0 NA's : 1 Median :30.00 Median : 7.310
## Mean :12.1 Mean :30.33 Mean : 7.101
## 3rd Qu.:15.0 3rd Qu.:38.00 3rd Qu.: 8.060
## Max. :30.0 Max. :85.00 Max. :11.750
## NA's :9 NA's :27
## lowbirthweight gender habit whitemom
## low :111 female:503 nonsmoker:873 not white:284
## not low:889 male :497 smoker :126 white :714
## NA's : 1 NA's : 2
##
##
##
##
As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.
Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.
habit and weight. What does the plot highlight about the relationship between these two variables? This boxplot shows that the median weight of babies with nonsmoker mothers are generally higher than those with smoker mothers.
The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.
## nc$habit: nonsmoker
## [1] 7.144273
## ------------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
## Loading required package: shiny
## Loading required package: openintro
## Please visit openintro.org for free statistics materials
##
## Attaching package: 'openintro'
## The following object is masked _by_ '.GlobalEnv':
##
## normTail
## The following objects are masked from 'package:datasets':
##
## cars, trees
## Loading required package: OIdata
## Loading required package: RCurl
## Loading required package: bitops
## Loading required package: maps
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:openintro':
##
## diamonds
## Loading required package: markdown
##
## Welcome to CUNY DATA606 Statistics and Probability for Data Analytics
## This package is designed to support this course. The text book used
## is OpenIntro Statistics, 3rd Edition. You can read this by typing
## vignette('os3') or visit www.OpenIntro.org.
##
## The getLabs() function will return a list of the labs available.
##
## The demo(package='DATA606') will list the demos that are available.
##
## Attaching package: 'DATA606'
## The following object is masked _by_ '.GlobalEnv':
##
## inference
## The following object is masked from 'package:utils':
##
## demo
There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test .
by command above but replacing mean with length.Our sample is random, has a sample sixe >30 and the observations are independent of one another.
## nc$habit: nonsmoker
## [1] 873
## ------------------------------------------------------------
## nc$habit: smoker
## [1] 126
H0: The average weight of babies born to non-smoking mothers are not significantly different from the average weight of babies born to smoking mothers.
HA: The average weight of babies born to non-smoking mothers are significantly different from the average weight of babies born to smoking mothers.
Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
Let’s pause for a moment to go through the arguments of this custom function. The first argument is y, which is the response variable that we are interested in: nc$weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc$habit. The third argument, est, is the parameter we’re interested in: "mean" (other options are "median", or "proportion".) Next we decide on the type of inference we want: a hypothesis test ("ht") or a confidence interval ("ci"). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be "less", "greater", or "twosided". Lastly, the method of inference can be "theoretical" or "simulation" based.
type argument to "ci" to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
By default the function reports an interval for (\(\mu_{nonsmoker} - \mu_{smoker}\)) . We can easily change this order by using the order argument:
inference(x = nc$habit,y = nc$weight, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
weeks) and interpret it in context. Note that since you’re doing inference on a single population parameter, there is no explanatory variable, so you can omit the x variable from the function.inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
conflevel = 0.90.inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical", conflevel = 0.90,
order = c("smoker","nonsmoker"))## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
H0: mu_mature mom - mu_younger mom = 0 HA: mu_mature mom - mu_younger mom != 0 Standard error = 0.152 Test statistic: Z = 0.186 p-value = 0.8526
The p-value is much higher than 0.1 so we do not reject the null hypothesis for the alternative hypothesis.
inference(y = nc$weight, x=nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 133, mean_mature mom = 7.1256, sd_mature mom = 1.6591
## n_younger mom = 867, mean_younger mom = 7.0972, sd_younger mom = 1.4855
## Observed difference between means (mature mom-younger mom) = 0.0283
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 0.152
## Test statistic: Z = 0.186
## p-value = 0.8526
## Loading required package: gsubfn
## Loading required package: proto
## Loading required package: RSQLite
agecut<-sqldf("select min(mage) as age, mature from nc where mature = 'mature mom' group by mature
union all
select max(mage) as age, mature from nc where mature = 'younger mom' group by mature")
agecut## age mature
## 1 35 mature mom
## 2 34 younger mom
The cutoff is 34 years old for younger moms and therefore it is 35 for mature moms.
inference function, report the statistical results, and also provide an explanation in plain language.inference(y = nc$visits, x=nc$marital, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_married = 380, mean_married = 10.9553, sd_married = 4.2408
## n_not married = 611, mean_not married = 12.82, sd_not married = 3.5883
## Observed difference between means (married-not married) = -1.8647
##
## H0: mu_married - mu_not married = 0
## HA: mu_married - mu_not married != 0
## Standard error = 0.262
## Test statistic: Z = -7.13
## p-value = 0
Does the marital status of a mother statistically impact the number of hospital visits that the mother will take during pregnancy. With a p-valuye of 0 we can reject the nul hypothesis in favor of the alternative hypothesis which states the marital status of a mother is correlated with the number of hospital vistits the mother will take.