clima = read_csv("data/clima_cg_jp-semanal.csv",
col_types = "cTdddddd")
glimpse(clima)
Observations: 2,748
Variables: 8
$ cidade <chr> "Campina Grande", "Campina Grande", "Campina Grande", "Campina Grande", "Campina Grande", "Campina Gr…
$ semana <dttm> 1992-12-27, 1993-01-03, 1993-01-10, 1993-01-31, 1993-02-07, 1993-02-14, 1993-02-21, 1993-02-28, 1993…
$ tmedia <dbl> 26.13333, 26.11905, 25.76667, 25.74000, 26.31429, 26.28571, 26.47143, 26.56667, 25.76667, 25.22857, 2…
$ tmax <dbl> 30.4, 32.4, 32.2, 32.0, 32.7, 32.7, 32.3, 32.3, 32.1, 31.2, 32.2, 31.7, 32.7, 31.5, 31.9, 32.4, 32.6,…
$ tmin <dbl> 20.7, 19.3, 19.7, 19.9, 19.6, 20.0, 20.4, 21.2, 19.0, 19.0, 19.3, 19.9, 19.9, 20.0, 20.0, 20.0, 20.2,…
$ chuva <dbl> 0.0, 0.0, 0.0, 0.4, 0.3, 0.0, 4.9, 0.0, 0.0, 6.1, 0.4, 1.2, 0.0, 1.6, 0.0, 1.8, 0.8, 8.3, 2.4, 6.2, 1…
$ mes <dbl> 12, 1, 1, 1, 2, 2, 2, 2, 10, 11, 11, 11, 11, 12, 12, 12, 12, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4…
$ ano <dbl> 1992, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993, 1993,…
clima %>%
ggplot(mapping = aes(x = cidade, y = tmax, color = cidade)) +
geom_quasirandom()

clima %>%
count(cidade)
NA
clima %>%
filter(ano > 2010) %>%
ggplot(mapping = aes(x = semana, y = tmax, color = cidade)) +
geom_line()

clima %>%
ggplot(mapping = aes(x = cidade, y = chuva, color = cidade)) +
geom_quasirandom()

Histograma
clima %>%
ggplot(mapping = aes(chuva)) +
geom_histogram(binwidth = 10,
fill = "white",
color = "salmon",
boundary = 0) +
facet_grid(cidade ~ .)

#Gráfico de densidade
clima %>%
filter(cidade == "Campina Grande") %>%
ggplot(mapping = aes(tmax)) +
geom_density(color = "salmon", fill = "white") +
facet_wrap(~ ano)

#Chuva
clima %>%
filter(ano > 2009) %>%
ggplot(mapping = aes(tmax)) +
geom_density(color = "red", fill = "white") +
facet_wrap(~ mes)

#Bloxplots #PONTO = outlier
clima %>%
filter(cidade == "Campina Grande") %>%
ggplot(mapping = aes(x = mes, y = tmax, group = mes)) +
geom_boxplot()

clima %>%
group_by(cidade) %>%
summarise(calor_medio = mean(tmax))
clima %>%
group_by(cidade) %>%
summarise(calor_medio = IQR(tmax))
NA
clima %>%
group_by(cidade) %>%
summarise(calor_medio = mean(tmax), amplitude = max(tmax) - min(tmax))
clima %>%
group_by(cidade, ano) %>%
summarise(calor_medio = mean(tmax), calor_mediano = median(tmax),
chuva_media = mean(chuva), chuva_mediana = median(chuva)) %>%
ggplot(aes(x = ano, y = calor_medio, color = cidade, group = cidade)) +
geom_line()

NA
media_cg = clima %>%
filter(cidade == "Campina Grande") %>%
group_by(mes) %>%
count(calor_medio = mean(tmax))
media_cg

LS0tCnRpdGxlOiAiTWV0ZW9yb2xvZ2lhIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShnZ2JlZXN3YXJtKQp0aGVtZV9zZXQodGhlbWVfYncoKSkKYGBgCgpgYGB7cn0KY2xpbWEgPSByZWFkX2NzdigiZGF0YS9jbGltYV9jZ19qcC1zZW1hbmFsLmNzdiIsCiAgICAgICAgICAgICAgICAgY29sX3R5cGVzID0gImNUZGRkZGRkIikKCmdsaW1wc2UoY2xpbWEpCmBgYAoKYGBge3J9CmNsaW1hICU+JQogICAgZ2dwbG90KG1hcHBpbmcgPSBhZXMoeCA9IGNpZGFkZSwgeSA9IHRtYXgsIGNvbG9yID0gY2lkYWRlKSkgKyAKICAgIGdlb21fcXVhc2lyYW5kb20oKQoKYGBgCgpgYGB7cn0KY2xpbWEgJT4lCiAgICBjb3VudChjaWRhZGUpCgpgYGAKCmBgYHtyfQpjbGltYSAlPiUKICAgIGZpbHRlcihhbm8gPiAyMDEwKSAlPiUKICAgIGdncGxvdChtYXBwaW5nID0gYWVzKHggPSBzZW1hbmEsIHkgPSB0bWF4LCBjb2xvciA9IGNpZGFkZSkpICsgCiAgICBnZW9tX2xpbmUoKQoKYGBgCgoKYGBge3J9CmNsaW1hICU+JQogICAgZ2dwbG90KG1hcHBpbmcgPSBhZXMoeCA9IGNpZGFkZSwgeSA9IGNodXZhLCBjb2xvciA9IGNpZGFkZSkpICsgCiAgICBnZW9tX3F1YXNpcmFuZG9tKCkKCmBgYAoKCiMgSGlzdG9ncmFtYQpgYGB7cn0KY2xpbWEgJT4lCiAgICBnZ3Bsb3QobWFwcGluZyA9IGFlcyhjaHV2YSkpICsKICAgIGdlb21faGlzdG9ncmFtKGJpbndpZHRoID0gMTAsIAogICAgICAgICAgICAgICAgICAgZmlsbCA9ICJ3aGl0ZSIsIAogICAgICAgICAgICAgICAgICAgY29sb3IgPSAic2FsbW9uIiwgCiAgICAgICAgICAgICAgICAgICBib3VuZGFyeSA9IDApICsKICAgIGZhY2V0X2dyaWQoY2lkYWRlIH4gLikKYGBgCgojR3LDoWZpY28gZGUgZGVuc2lkYWRlCmBgYHtyfQpjbGltYSAlPiUKICAgIGZpbHRlcihjaWRhZGUgPT0gIkNhbXBpbmEgR3JhbmRlIikgJT4lCiAgICBnZ3Bsb3QobWFwcGluZyA9IGFlcyh0bWF4KSkgKwogICAgZ2VvbV9kZW5zaXR5KGNvbG9yID0gInNhbG1vbiIsIGZpbGwgPSAid2hpdGUiKSArIAogICAgZmFjZXRfd3JhcCh+IGFubykKCmBgYAoKI0NodXZhCmBgYHtyfQpjbGltYSAlPiUKICAgIGZpbHRlcihhbm8gPiAyMDA5KSAlPiUKICAgIGdncGxvdChtYXBwaW5nID0gYWVzKHRtYXgpKSArCiAgICBnZW9tX2RlbnNpdHkoY29sb3IgPSAicmVkIiwgZmlsbCA9ICJ3aGl0ZSIpICsgCiAgICBmYWNldF93cmFwKH4gbWVzKQoKYGBgCgojQmxveHBsb3RzCiNQT05UTyA9IG91dGxpZXIKYGBge3J9CmNsaW1hICU+JQogICAgZmlsdGVyKGNpZGFkZSA9PSAiQ2FtcGluYSBHcmFuZGUiKSAlPiUKICAgIGdncGxvdChtYXBwaW5nID0gYWVzKHggPSBtZXMsIHkgPSB0bWF4LCBncm91cCA9IG1lcykpICsKICAgIGdlb21fYm94cGxvdCgpCmBgYAoKYGBge3J9CiAgICBjbGltYSAlPiUgCiAgICAgICAgZ3JvdXBfYnkoY2lkYWRlKSAlPiUKICAgICAgICBzdW1tYXJpc2UoY2Fsb3JfbWVkaW8gPSBtZWFuKHRtYXgpKQpgYGAKCmBgYHtyfQpjbGltYSAlPiUgCiAgICAgICAgZ3JvdXBfYnkoY2lkYWRlKSAlPiUKICAgICAgICBzdW1tYXJpc2UoY2Fsb3JfbWVkaW8gPSBJUVIodG1heCkpCgpgYGAKCmBgYHtyfQogICAgY2xpbWEgJT4lIAogICAgICAgIGdyb3VwX2J5KGNpZGFkZSkgJT4lCiAgICAgICAgc3VtbWFyaXNlKGNhbG9yX21lZGlvID0gbWVhbih0bWF4KSwgYW1wbGl0dWRlID0gbWF4KHRtYXgpIC0gbWluKHRtYXgpKQpgYGAKCmBgYHtyfQpjbGltYSAlPiUgCiAgICBncm91cF9ieShjaWRhZGUsIGFubykgJT4lCiAgICBzdW1tYXJpc2UoY2Fsb3JfbWVkaW8gPSBtZWFuKHRtYXgpLCBjYWxvcl9tZWRpYW5vID0gbWVkaWFuKHRtYXgpLAogICAgICAgICAgICAgIGNodXZhX21lZGlhID0gbWVhbihjaHV2YSksIGNodXZhX21lZGlhbmEgPSBtZWRpYW4oY2h1dmEpKSAlPiUKICAgIGdncGxvdChhZXMoeCA9IGFubywgeSA9IGNhbG9yX21lZGlvLCBjb2xvciA9IGNpZGFkZSwgZ3JvdXAgPSBjaWRhZGUpKSArIAogICAgZ2VvbV9saW5lKCkKICAgIApgYGAKCmBgYHtyfQptZWRpYV9jZyA9IGNsaW1hICU+JQogICAgZmlsdGVyKGNpZGFkZSA9PSAiQ2FtcGluYSBHcmFuZGUiKSAlPiUKICAgIGdyb3VwX2J5KG1lcykgJT4lCiAgICBjb3VudChjYWxvcl9tZWRpbyA9IG1lYW4odG1heCkpCiAgICAKdHVkb19jZyA9IGNsaW1hICU+JQogICAgZmlsdGVyKGNpZGFkZSA9PSAiQ2FtcGluYSBHcmFuZGUiKQoKZ2dwbG90KCkgKwogICAgZ2VvbV9wb2ludChkYXRhID0gdHVkb19jZywKICAgICAgICAgICAgICAgbWFwcGluZyA9IGFlcyh4ID0gbWVzLCB5ID0gdG1heCksCiAgICAgICAgICAgICAgIGFscGhhID0gLjMsCiAgICAgICAgICAgICAgIHNpemUgPSAuNSkgKwogICAgZ2VvbV9wb2ludChkYXRhID0gbWVkaWFfY2csCiAgICAgICAgICAgICAgIG1hcHBpbmcgPSBhZXMoeCA9IG1lcywKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHkgPSBjYWxvcl9tZWRpbyksCiAgICAgICAgICAgICAgIGNvbG9yID0gInJlZCIsCiAgICAgICAgICAgICAgIHNpemUgPSAxKQpgYGAKCmBgYHtyfQp0dWRvX2NnICU+JSBncm91cF9ieShtZXMpICU+JQogICAgc3VtbWFyaXNlKGRlc3Zpb19wYWRyYW8gPSBzZCh0bWF4KSkgJT4lCiAgICBnZ3Bsb3QoYWVzKHggPSBtZXMsIHkgPSBkZXN2aW9fcGFkcmFvKSkgKwogICAgZ2VvbV9wb2ludCgpCmBgYA==