The density of minimum value among n independent random variables with an exponential density has mean \(\mu\)/n.
mu <- 1000
n <- 100
exp_time <- mu/n
exp_time
## [1] 10
\(f_{z}\)(z) = (1/2) \(\lambda\) \(e^{-\lambda |z|}\)
\(f_{z}\)(z) = (1/2) \(\lambda\) \(e^{-\lambda |z|}\) can be written as
\[\begin{equation} f_{z}(z)=\begin{cases} (1/2) \lambda e^{-\lambda z}, & \text{if $z \geq 0$}.\\ (1/2) \lambda e^{\lambda z}, & \text{otherwise}. \end{cases} \end{equation}\]
exponential density function is defined as
\[\begin{equation} f(x)=\begin{cases} (1/2) \lambda e^{-\lambda x}, & \text{if $x \geq 0$}.\\ 0, & \text{otherwise}. \end{cases} \end{equation}\]
In this case Z = X1-X2
\(f_{z}\)(z)= \(f_{x1+(-x2)}\)(z) = \(\int_{-\infty}^\infty\) \(f_{x1}(x1)\) \(f_{-x2}(z-x1)\) dx1 = \(\int_{-\infty}^\infty\) \(\lambda e^{-\lambda x1}\) \(\lambda e^{-\lambda (x1-z)}\) dx1 = \(\int_{-\infty}^\infty\) \(\lambda^{2}\) \(e^{\lambda (z-2x1)}\) dx1
for \(z \geq 0\)
\(f_{z}\)(z)= = \(\int_{z}^\infty\) \(\lambda^{2}\) \(e^{\lambda (z-2x1)}\) dx1 = (1/2) \(\lambda e^{-\lambda z}\)
for z < 0
\(f_{z}\)(z)= = \(\int_{0}^\infty\) \(\lambda^{2}\) \(e^{\lambda (z-2x1)}\) dx1 = (1/2) \(\lambda e^{\lambda z}\)
After merging these two we will have
\[\begin{equation} f_{z}(z)=\begin{cases} (1/2) \lambda e^{-\lambda z}, & \text{if $z \geq 0$}.\\ (1/2) \lambda e^{\lambda z}, & \text{otherwise}. \end{cases} \end{equation}\]
Chebyshev Inequality
P(|x-\(\mu\)|\(\geq e\)) \(\leq\) \(\frac {\sigma ^2}{e^2}\)
var <- 100/3
e <- 2
round(var/e^2, 4)
## [1] 8.3333
In this case upper bound would be 1 as probability can’t be greater than 1.
e <- 5
round(var/e^2, 4)
## [1] 1.3333
In this case upper bound would be 1 as probability can’t be greater than 1.
e <- 9
round(var/e^2, 4)
## [1] 0.4115
e <- 20
round(var/e^2, 4)
## [1] 0.0833