Answer:
We have \(E[X_{i}]= 1/\lambda_{i}\). Therefore \(\lambda_{i}=1/1000\) .
\(min X_{i} ∼ Exp(\lambda)\) where \(\lambda\) = \(\sum_{i=1}^{100} \lambda_{i} = 100 * (1/1000) = 1/10\) (since all lambdas are the same and we have 100 of them)
Finally: \(E[min X_{i}] = 1/\lambda\) where \(\lambda=\sum_{i=1}^{100} \lambda_{i}\)
= 1/(1/10)
= 10
Therefore the expected time for the first bulb to burn out is 10 hours.
Assume that \(X_1\) and \(X_2\) are independent random variables, each having an exponential density with parameter \(\lambda\). Show that \(Z = X_1-X_2\) has density \(f_Z(z) = (1/2){\lambda}e^{-\lambda|z|}\).
Answer:
\(f_Z(z) = (1/2){\lambda}e^{-\lambda|z|}\) can be re-written as \(f_Z(z) = \begin{cases} (1/2){\lambda}e^{-\lambda z}, & \mbox{if } z \ge 0, \\ (1/2){\lambda}e^{\lambda z}, & \mbox{if }z <0. \end{cases}\)
The densities of the three random variables \(X_1\), \(X_2\) and \(Z\) can be represented by \(f_{X_1}\), \(f_{X_2}\) and \(f_{Z}\) respectively.
Applying the convolution of \(X_1\) and \(X_2\), we will have:
\[ \begin{split} f_Z(z) &= f_{X_1+(-X_2)}(z) \\ &= \int_{-\infty}^{\infty} f_{-X_2}(z-x_1) f_{X_1}(x_1) dx_1 \\ &= \int_{-\infty}^{\infty} f_{X_2}(x_1-z) f_{X_1}(x_1) dx_1 \\ &= \int_{-\infty}^{\infty} \lambda e^{-\lambda(x_1-z)} \lambda e^{-\lambda x_1} dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{-\lambda x_1 + \lambda z} e^{-\lambda x_1} dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{\lambda z - \lambda x_1 - \lambda x_1} dx_1 \\ &= \int_{-\infty}^{\infty} \lambda^2 e^{\lambda(z-2x_1)} dx_1 \end{split} \]
Consider \(z=x_1-x_2\), then \(x_2=x_1-z\).
If \(z \ge 0\), then \(x_2=(x_1-z) \ge 0\), and \(x_1 \ge z\), then \(f_Z(z) = \int_{z}^{\infty} \lambda^2 e^{\lambda(z-2x_1)} dx_1 = \frac{1}{2} \lambda e^{-\lambda z}\).
If \(z < 0\), then \(x_2=(x_1-z) \ge 0\), and \(x_1 \ge 0\), then \(f_Z(z) = \int_{0}^{\infty} \lambda^2 e^{\lambda(z-2x_1)} dx_1 =\frac{1}{2} \lambda e^{\lambda z}\).
Merging both equations , we will have: \(f_Z(z) = \begin{cases} (1/2){\lambda}e^{-\lambda z}, & \mbox{if } z \ge 0, \\ (1/2){\lambda}e^{\lambda z}, & \mbox{if }z <0. \end{cases}\)
Therefore: \(f_Z(z) = (1/2){\lambda}e^{-\lambda|z|}\).
Let \(X\) be a continuous random variable with mean \(\mu = 10\) and variance \(\sigma^2 = 100/3\). Using Chebyshev’s Inequality, find an upper bound for the following probabilities:
Answer:
Chebyshev Inequality: \(P(|X-\mu|\ge\epsilon) \le \frac{\sigma^2}{\epsilon^2}\) or, per example 8.4, \(P(|X-\mu|\ge k\sigma) \le \frac{1}{k^2}\).
For our problem, we have \(\mu=10\) and \(\sigma = \sqrt{\frac{100}{3}} = \frac{10}{\sqrt{3}}\).
If \(\epsilon = k\sigma\), then \(k=\frac{\epsilon}{\sigma} = \frac{\epsilon\sqrt{3}}{10}\).
Let \(u\) be upper bound in Chebyshev’s Inequality, then \(u = \frac{1}{k^2} = \frac{1}{(\epsilon\sqrt{3}/10)^2} = \frac{100}{3\epsilon^2}\).