1 Importing and checking multivariate dataset

  • Abdi and Williams (2010)
'data.frame':   101 obs. of  15 variables:
 $ country : Factor w/ 101 levels "Afghanistan",..: 17 43 53 64 89 90 100 2 5 11 ...
 $ populatn: int  10000 5800 125500 23100 20944 59400 73100 33900 8000 10100 ...
 $ density : num  55 5494 330 189 582 ...
 $ urban   : int  12 94 77 60 71 22 20 86 58 96 ...
 $ religion: Factor w/ 7 levels "Buddhist","Catholic",..: 1 1 1 1 1 1 1 2 2 2 ...
 $ lifeexpf: int  52 80 82 73 78 72 68 75 79 79 ...
 $ lifeexpm: int  50 75 76 67 72 65 63 68 73 73 ...
 $ literacy: int  35 77 99 99 91 93 88 95 99 99 ...
 $ pop_incr: num  2.9 -0.1 0.3 1.8 0.9 1.4 1.8 1.3 0.2 0.2 ...
 $ babymort: num  112 5.8 4.4 27.7 5.1 37 46 25.6 6.7 7.2 ...
 $ gdp_cap : int  260 14641 19860 1000 7055 1800 230 3408 18396 17912 ...
 $ birth_rt: num  45 13 11 24 15.6 19 27 20 12 12 ...
 $ death_rt: int  16 6 7 6 NA 6 8 9 11 11 ...
 $ aids_rt : num  0 1.71 0.57 0 NA ...
 $ fertilty: num  5.8 1.4 1.6 2.4 NA 2.1 3.3 2.8 1.5 1.7 ...

1.1 Removing any missing data

1.2 Perform a Principal Component Analysis, PCA

Importance of components:
                          Comp.1    Comp.2     Comp.3     Comp.4     Comp.5
Standard deviation     2.7087616 1.2911281 1.04105734 1.00592346 0.87247877
Proportion of Variance 0.5644146 0.1282317 0.08336926 0.07783708 0.05855532
Cumulative Proportion  0.5644146 0.6926463 0.77601552 0.85385260 0.91240793
                           Comp.6     Comp.7      Comp.8      Comp.9
Standard deviation     0.72822873 0.55376084 0.336685607 0.287102064
Proportion of Variance 0.04079362 0.02358854 0.008719784 0.006340584
Cumulative Proportion  0.95320155 0.97679009 0.985509875 0.991850460
                           Comp.10     Comp.11     Comp.12      Comp.13
Standard deviation     0.230213455 0.178530247 0.114810302 0.0888331853
Proportion of Variance 0.004076787 0.002451773 0.001013954 0.0006070258
Cumulative Proportion  0.995927247 0.998379020 0.999392974 1.0000000000

[1] "sdev"     "loadings" "center"   "scale"    "n.obs"    "scores"   "call"    
     Comp.1      Comp.2      Comp.3      Comp.4      Comp.5      Comp.6 
7.337389596 1.667011828 1.083800395 1.011882011 0.761219201 0.530317084 
     Comp.7      Comp.8      Comp.9     Comp.10     Comp.11     Comp.12 
0.306651067 0.113357198 0.082427595 0.052998235 0.031873049 0.013181405 
    Comp.13 
0.007891335 
              Comp.1      Comp.2      Comp.3      Comp.4      Comp.5
aids_rt   0.13018688  0.48914305  0.27601545  0.05676051  0.56653684
babymort  0.35512821  0.04183453 -0.08010393  0.02187439 -0.09389843
birth_rt  0.34444753 -0.20250179  0.11569201  0.08111067  0.14724487
death_rt  0.21052993  0.57337135  0.05810903 -0.02092011 -0.15897720
density  -0.05118745  0.04934190 -0.33818637  0.90739709 -0.05213367
fertilty  0.33899317 -0.17046116  0.11475473  0.07634149  0.20870936
gdp_cap  -0.25772716  0.23925131  0.08014020  0.13546795  0.41923034
lifeexpf -0.35961662 -0.12737653  0.04114621 -0.02885970  0.03198135
lifeexpm -0.34767386 -0.18546162  0.02648132  0.01290399  0.10879400
                Comp.6       Comp.7      Comp.8       Comp.9     Comp.10
aids_rt   0.5126530216  0.008792292  0.18974818  0.185626226  0.05817629
babymort -0.1696640839 -0.093564129  0.31877203 -0.234934568  0.46764678
birth_rt -0.0053077561  0.010694398 -0.29504817 -0.003399435  0.32376006
death_rt -0.3453519055 -0.167871372 -0.39179925  0.149435735 -0.41460896
density   0.1707986494  0.003345836 -0.10231676 -0.080940253 -0.06806686
fertilty -0.1121009845  0.041349798 -0.56735134  0.143399792  0.24814347
gdp_cap  -0.6021500068  0.426998407  0.07833446 -0.309830173  0.10780668
lifeexpf  0.0226901250  0.136870120 -0.13955245  0.252533799  0.01872426
lifeexpm -0.0004902739  0.230633064 -0.16059880  0.410727446  0.09467751
             Comp.11     Comp.12      Comp.13
aids_rt   0.05431066  0.05381397  0.028951975
babymort  0.57346591  0.32979656  0.075824495
birth_rt  0.12369564 -0.72838633  0.246635220
death_rt  0.31270725 -0.03853288  0.058109857
density   0.05088025  0.02497325  0.020948326
fertilty -0.28876310  0.52391304 -0.131524492
gdp_cap  -0.11362852 -0.06474920  0.006160408
lifeexpf  0.19057656  0.24624364  0.806907663
lifeexpm  0.56407348 -0.05164344 -0.504511980
 [ reached getOption("max.print") -- omitted 4 rows ]

1.3 More examples of PCA using other functions

        eigenvalue variance.percent cumulative.variance.percent
Dim.1  7.337389596      56.44145843                    56.44146
Dim.2  1.667011828      12.82316791                    69.26463
Dim.3  1.083800395       8.33692612                    77.60155
Dim.4  1.011882011       7.78370778                    85.38526
Dim.5  0.761219201       5.85553232                    91.24079
Dim.6  0.530317084       4.07936219                    95.32015
Dim.7  0.306651067       2.35885436                    97.67901
Dim.8  0.113357198       0.87197845                    98.55099
Dim.9  0.082427595       0.63405842                    99.18505
Dim.10 0.052998235       0.40767873                    99.59272
Dim.11 0.031873049       0.24517730                    99.83790
Dim.12 0.013181405       0.10139543                    99.93930
Dim.13 0.007891335       0.06070258                   100.00000

Reference

Abdi, Hervé, and Lynne J Williams. 2010. “Principal Component Analysis.” Wiley Interdisciplinary Reviews: Computational Statistics 2 (4): 433–59. https://doi.org/10.1002/wics.101.