\[ X_{i} \sim Exp(\lambda_{i}) \]
\[ \min X_{i} \sim Exp({\sum\lambda_{i}}) \]
\[E(Xi) = \frac{1}{\lambda} = 1000 \],
\[ {\lambda_{i}} = \frac{1}{1000} \]
\[ \min X_{i} \sim Exp({\sum\lambda_{i}}), with \lambda = \lambda_{1} + ... + \lambda_{100} = \frac{100}{1000} = \frac{1}{10} \]
\[ E[minX_{i}] = \frac{1}{\lambda} = \frac{1}{\frac{1}{10}} = 10 \]
\(W = X + Y\) is \(\int_{-\infty}^{\infty}f_X(x)f_Y(W - x)dx\).
\(Z = X + (-Y)\).
\(f_Z(z) = \int_{-\infty}^{\infty}f_X(x)f_{-Y}(z - x) dx\).
\(f_{-Y}(z - x)\) as \(f_Y(x - z)\).
\[ f_X(x) = f_Y(x) = \begin{cases} \lambda e^{\lambda x} & x \geq 0,\\ 0 & x < 0. \end{cases} \]
\(f_Z(z) = \int_{0}^{\infty}\lambda e^{-\lambda x}\lambda e^{-\lambda(x - z)} dx\).
\(f_Z(z) = \lambda e^{\lambda z}\int_{0}^{\infty}\lambda e^{-2\lambda x} dx\).
\(f_Z(z) = \lambda e^{\lambda z}\Big(-\frac{1}{2}e^{-2\lambda x}\Big|_{0}^{\infty}\Big) = \frac{1}{2}\lambda e^{\lambda z}\).
\(Z = X - Y\), as \(-Z = Y - X\)
\(X - Y\), i.e. \(f_Z(z) = f_Z(-z)\)
\[ f_Z(z) = \begin{cases} \frac{1}{2}\lambda e^{\lambda z} & z < 0,\\ \frac{1}{2}\lambda e^{-\lambda z} & z \geq 0. \end{cases} \]
\[ \frac{1}{2}\lambda e^{-\lambda|z|} \]