In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.
Load the nc data set into our workspace.
We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.
| variable | description |
|---|---|
fage |
father’s age in years. |
mage |
mother’s age in years. |
mature |
maturity status of mother. |
weeks |
length of pregnancy in weeks. |
premie |
whether the birth was classified as premature (premie) or full-term. |
visits |
number of hospital visits during pregnancy. |
marital |
whether mother is married or not married at birth. |
gained |
weight gained by mother during pregnancy in pounds. |
weight |
weight of the baby at birth in pounds. |
lowbirthweight |
whether baby was classified as low birthweight (low) or not (not low). |
gender |
gender of the baby, female or male. |
habit |
status of the mother as a nonsmoker or a smoker. |
whitemom |
whether mom is white or not white. |
As we can see from the few sample cases below the data set contains the cases for women giving birth and the details of the birth. Like what as the age of father, mother , maturity status of the mother , how many visits were made during the pregnancy whether the mother is married or not , how much weight the mother gained during the pregnancy, baby's weight and weight classification, mother's smoking status and whether she is a white or non white.
The total cases in this data set are 1000
## fage mage mature weeks premie visits marital gained weight
## 1 NA 13 younger mom 39 full term 10 married 38 7.63
## 2 NA 14 younger mom 42 full term 15 married 20 7.88
## 3 19 15 younger mom 37 full term 11 married 38 6.63
## 4 21 15 younger mom 41 full term 6 married 34 8.00
## 5 NA 15 younger mom 39 full term 9 married 27 6.38
## 6 NA 15 younger mom 38 full term 19 married 22 5.38
## lowbirthweight gender habit whitemom
## 1 not low male nonsmoker not white
## 2 not low male nonsmoker not white
## 3 not low female nonsmoker white
## 4 not low male nonsmoker white
## 5 not low female nonsmoker not white
## 6 low male nonsmoker not white
As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:
## fage mage mature weeks premie
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00 full term:846
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00 premie :152
## Median :30.00 Median :27 Median :39.00 NA's : 2
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## visits marital gained weight
## Min. : 0.0 married :386 Min. : 0.00 Min. : 1.000
## 1st Qu.:10.0 not married:613 1st Qu.:20.00 1st Qu.: 6.380
## Median :12.0 NA's : 1 Median :30.00 Median : 7.310
## Mean :12.1 Mean :30.33 Mean : 7.101
## 3rd Qu.:15.0 3rd Qu.:38.00 3rd Qu.: 8.060
## Max. :30.0 Max. :85.00 Max. :11.750
## NA's :9 NA's :27
## lowbirthweight gender habit whitemom
## low :111 female:503 nonsmoker:873 not white:284
## not low:889 male :497 smoker :126 white :714
## NA's : 1 NA's : 2
##
##
##
##
As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.
Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.
habit and weight. What does the plot highlight about the relationship between these two variables?WeightHabitDataFrame <- data.frame(nc$habit, nc$weight)
ggplot(aes(y = nc.weight , x = nc.habit, fill = nc.habit), data = WeightHabitDataFrame ) + geom_boxplot()The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.
## nc$habit: nonsmoker
## [1] 7.144273
## ------------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test .
by command above but replacing mean with length.## nc$habit: nonsmoker
## [1] 873
## ------------------------------------------------------------
## nc$habit: smoker
## [1] 126
As we can see since the samples are independant and the sample sizes are greater than 30 we can easily say that the conditions for inference are satisified
H0 = That there is no difference between the average weights of the babies born to Smoking mothers vs Non Smoking Mothers.
HA = Ther is a difference between the average weights of the babies born to Smoking mothers vs Non Smoking Mothers.
Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Warning: package 'BHH2' was built under R version 3.6.3
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
Let’s pause for a moment to go through the arguments of this custom function. The first argument is y, which is the response variable that we are interested in: nc$weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc$habit. The third argument, est, is the parameter we’re interested in: "mean" (other options are "median", or "proportion".) Next we decide on the type of inference we want: a hypothesis test ("ht") or a confidence interval ("ci"). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be "less", "greater", or "twosided". Lastly, the method of inference can be "theoretical" or "simulation" based.
type argument to "ci" to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.The difference in the confidence interval we can see does not equal to zero so we can reject H0 and accept HA
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
By default the function reports an interval for (\(\mu_{nonsmoker} - \mu_{smoker}\)) . We can easily change this order by using the order argument:
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
weeks) and interpret it in context. Note that since you’re doing inference on a single population parameter, there is no explanatory variable, so you can omit the x variable from the function. The way we can intrepet this in the context based on results from the 95% Confidence interval
below is that we are 95% confident that the mean Pregnancy time is between 38.1528 to 38.5165 weeks.
inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
conflevel = 0.90inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",conflevel = 0.90)## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
inference(y = nc$gained, x = nc$mature, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 129, mean_mature mom = 28.7907, sd_mature mom = 13.4824
## n_younger mom = 844, mean_younger mom = 30.5604, sd_younger mom = 14.3469
## Observed difference between means (mature mom-younger mom) = -1.7697
##
## Standard error = 1.2857
## 95 % Confidence interval = ( -4.2896 , 0.7502 )
## [1] 35
## [1] 34
My method to find the cutoff age was very simple what I did was just create two seperate data sets one for
Mature Moms and one for Younger Moms and then I calculated the minimum age of mature moms using the
min function Similary I used the max function to calculate the maximum age of younger moms and the
results show that as the moms turn 35 they are in the mature category. So the cutoff age is 35.
inference function, report the statistical results, and also provide an explanation in plain language. The variables I will be choosing is weeks in pregnancy and gender of baby and try to determine
if there is any difference in the average weeks of pregnancy based on gender of the baby.
H0= The weeks of pregnancy are equal for both baby genders.
HA= The weeks of pregnancy is not equal
inference(y = nc$weeks, x = nc$gender, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_female = 502, mean_female = 38.2789, sd_female = 3.0232
## n_male = 496, mean_male = 38.3911, sd_male = 2.8377
## Observed difference between means (female-male) = -0.1122
##
## H0: mu_female - mu_male = 0
## HA: mu_female - mu_male != 0
## Standard error = 0.186
## Test statistic: Z = -0.605
## p-value = 0.5454
Now lets construct a confidence interval between the same variables
inference(y = nc$weeks, x = nc$gender, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_female = 502, mean_female = 38.2789, sd_female = 3.0232
## n_male = 496, mean_male = 38.3911, sd_male = 2.8377
## Observed difference between means (female-male) = -0.1122
##
## Standard error = 0.1856
## 95 % Confidence interval = ( -0.476 , 0.2515 )
Since the confidence interval spans 0 we will have to accept the null hypothesis and that the average weeks for both Male and Female babies is the same