setwd("~/Dropbox/Research/Bernd")

#reading in each time period separately 
t1<-read.csv ("SzuChi Longitudinal Data T1.csv", header=T, sep=",")
t2<-read.csv ("SzuChi Longitudinal Data T2.csv", header=T, sep=",")
t3<-read.csv ("SzuChi Longitudinal Data T3.csv", header=T, sep=",")

#assigning each dataset its time period label
t1$time<-1
t2$time<-2
t3$time<-3

#selecting only the variables we need for analysis 
t1<-t1[c(1,31,32,34,35,37:88,100,101)]
t2<-t2[c(67,20:62,69)]
t3<-t3[c(64,21:63,67)]

#making sure the ID variable has the same name in each dataset
library(plyr)
t2<-rename(t2, c("prolific_pid"="prolific.id"))
t3<-rename(t3, c("PROLIFIC_PID"="prolific.id"))

### TIME 1 ANALYSIS ### 

t1$interest_dating<-(t1$InterestHumanMid_1+t1$InterestHumanMid_2+t1$InterestHumanMid_3+t1$InterestHumanMid_4)/4
summary(lm(interest_dating~condition, t1))
## 
## Call:
## lm(formula = interest_dating ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.6228 -0.8506  0.1494  1.1494  2.3772 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      6.6228     0.1276  51.916   <2e-16 ***
## conditionhuman   0.2278     0.1804   1.263    0.208    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.658 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.004723,   Adjusted R-squared:  0.001761 
## F-statistic: 1.595 on 1 and 336 DF,  p-value: 0.2075
summary(lm(interest_dating~condition * int_dat, t1))
## 
## Call:
## lm(formula = interest_dating ~ condition * int_dat, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.2514 -0.5225  0.0475  0.7214  3.3464 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             1.95520    0.34265   5.706 2.55e-08 ***
## conditionhuman         -0.19936    0.52524  -0.380    0.705    
## int_dat                 0.89945    0.06381  14.096  < 2e-16 ***
## conditionhuman:int_dat  0.05511    0.09676   0.570    0.569    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.145 on 334 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.5284, Adjusted R-squared:  0.5242 
## F-statistic: 124.8 on 3 and 334 DF,  p-value: < 2.2e-16
#This is just interest in long term relationship (_4) - I also tried the other 3 individual measures, no effect there
summary(lm(InterestHumanMid_4~condition, t1)) 
## 
## Call:
## lm(formula = InterestHumanMid_4 ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6627 -0.6627  0.3373  1.3373  1.7574 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      7.2426     0.1279  56.629   <2e-16 ***
## conditionhuman   0.4201     0.1809   2.323   0.0208 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.663 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.0158, Adjusted R-squared:  0.01287 
## F-statistic: 5.395 on 1 and 336 DF,  p-value: 0.02079
summary(lm(InterestHumanMid_3~condition*int_dat, t1)) 
## 
## Call:
## lm(formula = InterestHumanMid_3 ~ condition * int_dat, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.6172 -0.7110  0.2594  0.9050  3.1015 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             2.27351    0.39380   5.773 1.78e-08 ***
## conditionhuman          0.53024    0.60365   0.878    0.380    
## int_dat                 0.90625    0.07334  12.357  < 2e-16 ***
## conditionhuman:int_dat -0.08344    0.11120  -0.750    0.454    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.316 on 334 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:   0.43,  Adjusted R-squared:  0.4248 
## F-statistic: 83.97 on 3 and 334 DF,  p-value: < 2.2e-16
t1$feel_relationship<-(t1$RelationshipMid_1+t1$RelationshipMid_2)/2
summary(lm(feel_relationship~condition, t1))
## 
## Call:
## lm(formula = feel_relationship ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4615 -0.5976  0.0385  0.8114  1.5385 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.46154    0.08358  65.348   <2e-16 ***
## conditionhuman  0.13609    0.11820   1.151     0.25    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.086 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.00393,    Adjusted R-squared:  0.0009659 
## F-statistic: 1.326 on 1 and 336 DF,  p-value: 0.2504
summary(lm(feel_relationship~condition*int_dat, t1))
## 
## Call:
## lm(formula = feel_relationship ~ condition * int_dat, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2249 -0.4545  0.0840  0.5840  3.3047 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             3.27370    0.26786  12.222  < 2e-16 ***
## conditionhuman         -0.55036    0.41059  -1.340    0.181    
## int_dat                 0.42160    0.04988   8.452 8.99e-16 ***
## conditionhuman:int_dat  0.11693    0.07564   1.546    0.123    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.895 on 334 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.3281, Adjusted R-squared:  0.3221 
## F-statistic: 54.36 on 3 and 334 DF,  p-value: < 2.2e-16
summary(lm(RelationshipMid_1~condition, t1))
## 
## Call:
## lm(formula = RelationshipMid_1 ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.3018 -0.4142 -0.3018  0.6982  1.6982 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.30178    0.09219  57.509   <2e-16 ***
## conditionhuman  0.11243    0.13038   0.862    0.389    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.198 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.002208,   Adjusted R-squared:  -0.0007615 
## F-statistic: 0.7436 on 1 and 336 DF,  p-value: 0.3891
summary(lm(RelationshipMid_2~condition, t1))
## 
## Call:
## lm(formula = RelationshipMid_2 ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6213 -0.6213  0.2189  1.2189  1.3787 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.62130    0.08587  65.466   <2e-16 ***
## conditionhuman  0.15976    0.12143   1.316    0.189    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.005125,   Adjusted R-squared:  0.002164 
## F-statistic: 1.731 on 1 and 336 DF,  p-value: 0.1892
t1$relationship_mid<-(t1$RelationshipMid_1+t1$RelationshipMid_2)/2
summary(lm(relationship_mid~condition*int_dat, t1))
## 
## Call:
## lm(formula = relationship_mid ~ condition * int_dat, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2249 -0.4545  0.0840  0.5840  3.3047 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             3.27370    0.26786  12.222  < 2e-16 ***
## conditionhuman         -0.55036    0.41059  -1.340    0.181    
## int_dat                 0.42160    0.04988   8.452 8.99e-16 ***
## conditionhuman:int_dat  0.11693    0.07564   1.546    0.123    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.895 on 334 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.3281, Adjusted R-squared:  0.3221 
## F-statistic: 54.36 on 3 and 334 DF,  p-value: < 2.2e-16
t1$feelings_dating<-8-(t1$anxious_abt_dating+t1$stressed_abt_dating+t1$insecure_abt_dating+(8-t1$conf_abt_dating)+(8-t1$calm_abt_dating)+(8-t1$comf_abt_dating))/6
summary(lm(feelings_dating~condition, t1))
## 
## Call:
## lm(formula = feelings_dating ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4635 -1.0069 -0.1302  0.8264  3.6598 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.3402     0.1052  31.741   <2e-16 ***
## conditionhuman   0.1233     0.1488   0.828    0.408    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.368 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.002038,   Adjusted R-squared:  -0.0009322 
## F-statistic: 0.6861 on 1 and 336 DF,  p-value: 0.4081
#I looked at each of the "how much you value" traits individually, only these 2 were significant
summary(lm(communication~condition, t1))
## 
## Call:
## lm(formula = communication ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3432 -0.7278  0.2722  1.2722  1.6568 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      8.7278     0.1123  77.748   <2e-16 ***
## conditionhuman  -0.3846     0.1588  -2.423   0.0159 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.459 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.01717,    Adjusted R-squared:  0.01424 
## F-statistic: 5.869 on 1 and 336 DF,  p-value: 0.01593
summary(lm(security~condition, t1))
## 
## Call:
## lm(formula = security ~ condition, data = t1)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.6627 -0.6627  0.3373  1.3373  1.6391 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.6627     0.1003  56.482   <2e-16 ***
## conditionhuman  -0.3018     0.1418  -2.128    0.034 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.303 on 336 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.0133, Adjusted R-squared:  0.01037 
## F-statistic:  4.53 on 1 and 336 DF,  p-value: 0.03403
###  TIME 2  ###
#Merging time 2 data with the condition data from Time 1 since Time 2 data didnt have condition 
id_cond1<-t1[c("condition", "prolific.id", "int_dat")]
time2<-merge(id_cond1, t2, by="prolific.id", all.x=FALSE)
table(time2$condition)
## 
##          AI human 
##     7   101   103
time2<-subset(time2, condition=="AI" | condition=="human")
time2$condition<-droplevels(time2$condition)

time2$interest_dating<-(time2$InterestHumanMid_1+time2$InterestHumanMid_2+time2$InterestHumanMid_3+time2$InterestHumanMid_4)/4
summary(lm(interest_dating~condition*int_dat, time2))
## 
## Call:
## lm(formula = interest_dating ~ condition * int_dat, data = time2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4516 -0.9321  0.3179  0.8412  2.5679 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             2.37075    0.54777   4.328 2.38e-05 ***
## conditionhuman          0.11978    0.81098   0.148    0.883    
## int_dat                 0.81617    0.10137   8.051 7.33e-14 ***
## conditionhuman:int_dat -0.02786    0.14845  -0.188    0.851    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.338 on 199 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.372,  Adjusted R-squared:  0.3625 
## F-statistic: 39.29 on 3 and 199 DF,  p-value: < 2.2e-16
summary(lm(InterestHumanMid_4~condition*int_dat, time2))
## 
## Call:
## lm(formula = InterestHumanMid_4 ~ condition * int_dat, data = time2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.0718 -0.7179  0.3453  0.9304  4.2711 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              4.1437     0.6513   6.362 1.34e-09 ***
## conditionhuman          -0.6108     0.9643  -0.633    0.527    
## int_dat                  0.5852     0.1205   4.855 2.43e-06 ***
## conditionhuman:int_dat   0.1226     0.1765   0.695    0.488    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.591 on 199 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.2135, Adjusted R-squared:  0.2017 
## F-statistic: 18.01 on 3 and 199 DF,  p-value: 2.216e-10
time2$feel_relationship<-(time2$RelationshipMid_1+time2$RelationshipMid_2)/2
summary(lm(feel_relationship~condition*int_dat, time2))
## 
## Call:
## lm(formula = feel_relationship ~ condition * int_dat, data = time2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0529 -1.0529  0.4345  1.1350  4.0070 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              2.6500     0.6673   3.971  0.00010 ***
## conditionhuman          -1.0529     0.9870  -1.067  0.28738    
## int_dat                  0.3430     0.1233   2.782  0.00593 ** 
## conditionhuman:int_dat   0.1507     0.1805   0.835  0.40496    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.627 on 197 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.1024, Adjusted R-squared:  0.08877 
## F-statistic: 7.494 on 3 and 197 DF,  p-value: 8.931e-05
summary(lm(RelationshipMid_1~condition*int_dat, time2))
## 
## Call:
## lm(formula = RelationshipMid_1 ~ condition * int_dat, data = time2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.0359 -1.1371  0.2613  1.1461  4.4564 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              2.1452     0.6953   3.086  0.00232 **
## conditionhuman          -1.2464     1.0283  -1.212  0.22695   
## int_dat                  0.3984     0.1285   3.101  0.00221 **
## conditionhuman:int_dat   0.1926     0.1881   1.024  0.30708   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.695 on 197 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.1266, Adjusted R-squared:  0.1133 
## F-statistic: 9.516 on 3 and 197 DF,  p-value: 6.717e-06
time2$feelings_dating<-8-(time2$anxious_abt_dating+time2$stressed_abt_dating+time2$insecure_abt_dating+(8-time2$conf_abt_dating)+(8-time2$calm_abt_dating)+(8-time2$comf_abt_dating))/6
summary(lm(feelings_dating~condition, time2))
## 
## Call:
## lm(formula = feelings_dating ~ condition, data = time2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3997 -0.8997  0.1003  0.9337  2.6100 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.3997     0.1261  34.877  < 2e-16 ***
## conditionhuman  -0.5097     0.1762  -2.892  0.00425 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.249 on 199 degrees of freedom
##   (3 observations deleted due to missingness)
## Multiple R-squared:  0.04034,    Adjusted R-squared:  0.03552 
## F-statistic: 8.365 on 1 and 199 DF,  p-value: 0.00425
summary(lm(learning~condition, time2))
## 
## Call:
## lm(formula = learning ~ condition, data = time2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2330 -1.2330  0.1354  1.1354  3.1354 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.8646     0.1754  22.036   <2e-16 ***
## conditionhuman   0.3684     0.2438   1.511    0.132    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.718 on 197 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.01146,    Adjusted R-squared:  0.006445 
## F-statistic: 2.284 on 1 and 197 DF,  p-value: 0.1323
summary(lm(security~condition, time2))
## 
## Call:
## lm(formula = security ~ condition, data = time2)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.5833 -0.6796  0.3204  1.3204  1.4167 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     5.58333    0.13792  40.481   <2e-16 ***
## conditionhuman  0.09628    0.19171   0.502    0.616    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.351 on 197 degrees of freedom
##   (5 observations deleted due to missingness)
## Multiple R-squared:  0.001279,   Adjusted R-squared:  -0.003791 
## F-statistic: 0.2522 on 1 and 197 DF,  p-value: 0.6161
###   TIME 3   ###

time3<-merge(id_cond1, t3, by="prolific.id", all.x=FALSE)
table(time3$condition)
## 
##          AI human 
##     2    84    86
time3<-subset(time3, condition=="AI" | condition=="human")
time3$condition<-droplevels(time3$condition)

time3$interest_dating<-(time3$InterestHumanMid_1+time3$InterestHumanMid_2+time3$InterestHumanMid_3+time3$InterestHumanMid_4)/4
summary(lm(interest_dating~condition, time3))
## 
## Call:
## lm(formula = interest_dating ~ condition, data = time3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7411 -0.8169  0.2589  1.2589  2.2589 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     6.74107    0.19423  34.707   <2e-16 ***
## conditionhuman  0.07579    0.27308   0.278    0.782    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.78 on 168 degrees of freedom
## Multiple R-squared:  0.0004583,  Adjusted R-squared:  -0.005491 
## F-statistic: 0.07703 on 1 and 168 DF,  p-value: 0.7817
summary(lm(InterestHumanMid_4~condition*int_dat, time3))
## 
## Call:
## lm(formula = InterestHumanMid_4 ~ condition * int_dat, data = time3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2806 -0.5269  0.3112  0.9658  3.9661 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              4.5029     0.7390   6.094 7.46e-09 ***
## conditionhuman          -0.9905     1.0680  -0.927 0.355039    
## int_dat                  0.5310     0.1361   3.901 0.000139 ***
## conditionhuman:int_dat   0.2227     0.1951   1.141 0.255508    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.547 on 166 degrees of freedom
## Multiple R-squared:  0.215,  Adjusted R-squared:  0.2008 
## F-statistic: 15.15 on 3 and 166 DF,  p-value: 9.194e-09
time3$feel_relationship<-(time3$RelationshipMid_1+time3$RelationshipMid_2)/2
summary(lm(feel_relationship~condition, time3))
## 
## Call:
## lm(formula = feel_relationship ~ condition, data = time3)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.494 -1.401  0.506  1.506  2.599 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.49398    0.20121  22.335   <2e-16 ***
## conditionhuman -0.09281    0.28206  -0.329    0.743    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.833 on 167 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.000648,   Adjusted R-squared:  -0.005336 
## F-statistic: 0.1083 on 1 and 167 DF,  p-value: 0.7425
summary(lm(RelationshipMid_1~condition*int_dat, time3))
## 
## Call:
## lm(formula = RelationshipMid_1 ~ condition * int_dat, data = time3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.8712 -1.4473  0.4601  1.4601  3.9202 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)   
## (Intercept)              2.7878     0.8920   3.125   0.0021 **
## conditionhuman          -0.8840     1.2842  -0.688   0.4922   
## int_dat                  0.2920     0.1650   1.770   0.0785 . 
## conditionhuman:int_dat   0.1319     0.2351   0.561   0.5756   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.853 on 165 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.05593,    Adjusted R-squared:  0.03877 
## F-statistic: 3.258 on 3 and 165 DF,  p-value: 0.02306
time3$feelings_dating<-8-(time3$anxious_abt_dating+time3$stressed_abt_dating+time3$insecure_abt_dating+(8-time3$conf_abt_dating)+(8-time3$calm_abt_dating)+(8-time3$comf_abt_dating))/6
summary(lm(feelings_dating~condition, time3))
## 
## Call:
## lm(formula = feelings_dating ~ condition, data = time3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.3869 -0.9651 -0.0093  0.9464  2.7016 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      4.3869     0.1433  30.607   <2e-16 ***
## conditionhuman  -0.4218     0.2015  -2.093   0.0378 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.314 on 168 degrees of freedom
## Multiple R-squared:  0.02541,    Adjusted R-squared:  0.01961 
## F-statistic: 4.381 on 1 and 168 DF,  p-value: 0.03784
summary(lm(communication~condition, time3))
## 
## Call:
## lm(formula = communication ~ condition, data = time3)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.7108 -0.7108  0.2892  1.2892  1.3837 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     8.71084    0.15180  57.384   <2e-16 ***
## conditionhuman -0.09456    0.21280  -0.444    0.657    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.383 on 167 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.001181,   Adjusted R-squared:  -0.0048 
## F-statistic: 0.1975 on 1 and 167 DF,  p-value: 0.6573
summary(lm(security~condition, time3))
## 
## Call:
## lm(formula = security ~ condition, data = time3)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.686 -0.686  0.314  1.314  1.422 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.5783     0.1483  37.620   <2e-16 ***
## conditionhuman   0.1077     0.2079   0.518    0.605    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.351 on 167 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.001606,   Adjusted R-squared:  -0.004372 
## F-statistic: 0.2686 on 1 and 167 DF,  p-value: 0.6049