summary(lm(meet_date ~ AI_date * interest1, d))
##
## Call:
## lm(formula = meet_date ~ AI_date * interest1, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1773 -0.7012 -0.0015 0.8227 2.7271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.7968 0.5027 5.563 1.70e-07 ***
## AI_datehuman -1.8474 0.7386 -2.501 0.0138 *
## interest1 0.4761 0.1060 4.490 1.68e-05 ***
## AI_datehuman:interest1 0.3659 0.1546 2.367 0.0196 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.248 on 117 degrees of freedom
## Multiple R-squared: 0.3951, Adjusted R-squared: 0.3796
## F-statistic: 25.48 on 3 and 117 DF, p-value: 9.332e-13
summary(lm(date_tonight ~ AI_date * interest1, d))
##
## Call:
## lm(formula = date_tonight ~ AI_date * interest1, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.6788 -0.9880 0.2049 0.9975 3.0085
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.3118 0.5874 5.638 1.21e-07 ***
## AI_datehuman -2.5346 0.8630 -2.937 0.00399 **
## interest1 0.3381 0.1239 2.729 0.00732 **
## AI_datehuman:interest1 0.4654 0.1806 2.577 0.01120 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.458 on 117 degrees of freedom
## Multiple R-squared: 0.2848, Adjusted R-squared: 0.2665
## F-statistic: 15.53 on 3 and 117 DF, p-value: 1.438e-08
USA<-subset(d, culture=="US")
summary(lm(date_tonight ~ AI_date, d))
##
## Call:
## lm(formula = date_tonight ~ AI_date, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8276 -0.8276 0.1724 1.1724 2.5238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.8276 0.2232 21.624 <2e-16 ***
## AI_datehuman -0.3514 0.3094 -1.136 0.258
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.7 on 119 degrees of freedom
## Multiple R-squared: 0.01072, Adjusted R-squared: 0.002411
## F-statistic: 1.29 on 1 and 119 DF, p-value: 0.2583
summary(lm(interest_service ~ AI_date, d))
##
## Call:
## lm(formula = interest_service ~ AI_date, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6984 -1.3276 0.3016 1.3016 2.6724
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3276 0.2252 19.216 <2e-16 ***
## AI_datehuman 0.3708 0.3121 1.188 0.237
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.715 on 119 degrees of freedom
## Multiple R-squared: 0.01172, Adjusted R-squared: 0.003419
## F-statistic: 1.412 on 1 and 119 DF, p-value: 0.2371
summary(lm(interest_hangout ~ AI_date, d))
##
## Call:
## lm(formula = interest_hangout ~ AI_date, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2586 -0.4921 -0.2586 0.7414 1.7414
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.2586 0.1527 34.445 <2e-16 ***
## AI_datehuman 0.2334 0.2116 1.103 0.272
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.163 on 119 degrees of freedom
## Multiple R-squared: 0.01013, Adjusted R-squared: 0.001808
## F-statistic: 1.217 on 1 and 119 DF, p-value: 0.2721
summary(lm(interest_connect_people ~ AI_date, d))
##
## Call:
## lm(formula = interest_connect_people ~ AI_date, data = d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3448 -0.6190 0.3810 0.6552 1.6552
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3448 0.1551 34.468 <2e-16 ***
## AI_datehuman 0.2742 0.2149 1.276 0.204
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.181 on 119 degrees of freedom
## Multiple R-squared: 0.0135, Adjusted R-squared: 0.005208
## F-statistic: 1.628 on 1 and 119 DF, p-value: 0.2044
summary(lm(date_tonight ~ AI_date, USA))
##
## Call:
## lm(formula = date_tonight ~ AI_date, data = USA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1795 -1.1795 -0.1795 0.8205 2.7000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.1795 0.2516 20.584 <2e-16 ***
## AI_datehuman -0.8795 0.3536 -2.487 0.015 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.571 on 77 degrees of freedom
## Multiple R-squared: 0.07436, Adjusted R-squared: 0.06234
## F-statistic: 6.185 on 1 and 77 DF, p-value: 0.01504
summary(lm(interest_service ~ AI_date, USA))
##
## Call:
## lm(formula = interest_service ~ AI_date, data = USA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.575 -1.333 0.425 1.425 2.667
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.3333 0.2635 16.448 <2e-16 ***
## AI_datehuman 0.2417 0.3703 0.653 0.516
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.645 on 77 degrees of freedom
## Multiple R-squared: 0.005502, Adjusted R-squared: -0.007413
## F-statistic: 0.426 on 1 and 77 DF, p-value: 0.5159
summary(lm(interest_hangout ~ AI_date, USA))
##
## Call:
## lm(formula = interest_hangout ~ AI_date, data = USA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4359 -0.4359 -0.3500 0.6500 1.6500
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4359 0.1776 30.612 <2e-16 ***
## AI_datehuman -0.0859 0.2495 -0.344 0.732
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.109 on 77 degrees of freedom
## Multiple R-squared: 0.001536, Adjusted R-squared: -0.01143
## F-statistic: 0.1185 on 1 and 77 DF, p-value: 0.7316
summary(lm(interest_connect_people ~ AI_date, USA))
##
## Call:
## lm(formula = interest_connect_people ~ AI_date, data = USA)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4359 -0.4750 -0.4359 0.5641 1.5641
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.4359 0.1802 30.158 <2e-16 ***
## AI_datehuman 0.0391 0.2533 0.154 0.878
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.126 on 77 degrees of freedom
## Multiple R-squared: 0.0003094, Adjusted R-squared: -0.01267
## F-statistic: 0.02383 on 1 and 77 DF, p-value: 0.8777
CONDITION * AI LIVELY INTERACTION, DV = DESIRE FOR DATE TONIGHT
Call:
lm(formula = date_tonight ~ AI_date * AI_lively_composite_mc,
data = d)
Residuals:
Min 1Q Median 3Q Max
-3.8384 -0.9577 0.2583 1.3016 3.2091
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.7874 0.2221 21.552 < 2e-16
AI_datehuman -0.4357 0.3080 -1.415 0.15975
AI_lively_composite_mc -0.2055 0.2340 -0.878 0.38158
AI_datehuman:AI_lively_composite_mc 0.8970 0.3411 2.630 0.00969
(Intercept) ***
AI_datehuman
AI_lively_composite_mc
AI_datehuman:AI_lively_composite_mc **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.655 on 117 degrees of freedom
Multiple R-squared: 0.07798, Adjusted R-squared: 0.05434
F-statistic: 3.299 on 3 and 117 DF, p-value: 0.02291

CONDITION * AI LIVELY INTERACTION, DV = NEED TO BELONG
Call:
lm(formula = belong_composite ~ AI_date * AI_lively_composite_mc,
data = d)
Residuals:
Min 1Q Median 3Q Max
-1.97130 -0.44911 0.00678 0.58746 1.90838
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.34005 0.11162 29.923 <2e-16
AI_datehuman 0.06733 0.15475 0.435 0.6643
AI_lively_composite_mc -0.10374 0.11759 -0.882 0.3795
AI_datehuman:AI_lively_composite_mc 0.33597 0.17140 1.960 0.0524
(Intercept) ***
AI_datehuman
AI_lively_composite_mc
AI_datehuman:AI_lively_composite_mc .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8318 on 117 degrees of freedom
Multiple R-squared: 0.03776, Adjusted R-squared: 0.01309
F-statistic: 1.53 on 3 and 117 DF, p-value: 0.2103

CONDITION * AI COMPETENT INTERACTION, DV = NEED TO BELONG
Call:
lm(formula = belong_composite ~ AI_date * AI_competent_composite_mc,
data = d)
Residuals:
Min 1Q Median 3Q Max
-2.29879 -0.52002 -0.02671 0.60121 1.59613
Coefficients:
Estimate Std. Error t value
(Intercept) 3.3347 0.1085 30.739
AI_datehuman 0.1005 0.1504 0.668
AI_competent_composite_mc 0.2494 0.1058 2.356
AI_datehuman:AI_competent_composite_mc -0.3970 0.1577 -2.518
Pr(>|t|)
(Intercept) <2e-16 ***
AI_datehuman 0.5052
AI_competent_composite_mc 0.0201 *
AI_datehuman:AI_competent_composite_mc 0.0131 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8221 on 117 degrees of freedom
Multiple R-squared: 0.06024, Adjusted R-squared: 0.03615
F-statistic: 2.5 on 3 and 117 DF, p-value: 0.06291

CONDITION * AI MIND INTERACTION, DV = DESIRE FOR WARM PARTNER
Call:
lm(formula = Warmth ~ AI_date * AI_mind_composite_mc, data = d)
Residuals:
Min 1Q Median 3Q Max
-4.7543 -0.7543 0.2531 1.1794 2.6109
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.3315 0.1836 45.376 < 2e-16 ***
AI_datehuman 0.4398 0.2540 1.731 0.086037 .
AI_mind_composite_mc -0.6131 0.1584 -3.870 0.000179 ***
AI_datehuman:AI_mind_composite_mc 0.6500 0.2120 3.066 0.002697 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.379 on 117 degrees of freedom
Multiple R-squared: 0.1254, Adjusted R-squared: 0.1029
F-statistic: 5.59 on 3 and 117 DF, p-value: 0.001283

CONDITION * AI COMPETENT INTERACTION, DV = DESIRE FOR FIT PARTNER
Call:
lm(formula = Fit ~ AI_date * AI_competent_composite_mc, data = d)
Residuals:
Min 1Q Median 3Q Max
-5.8890 -1.2261 0.1821 1.1430 3.5090
Coefficients:
Estimate Std. Error t value
(Intercept) 7.5294 0.2354 31.982
AI_datehuman -0.5461 0.3264 -1.673
AI_competent_composite_mc -0.2868 0.2297 -1.249
AI_datehuman:AI_competent_composite_mc 0.9502 0.3421 2.777
Pr(>|t|)
(Intercept) < 2e-16 ***
AI_datehuman 0.09695 .
AI_competent_composite_mc 0.21431
AI_datehuman:AI_competent_composite_mc 0.00638 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.784 on 117 degrees of freedom
Multiple R-squared: 0.09013, Adjusted R-squared: 0.0668
F-statistic: 3.863 on 3 and 117 DF, p-value: 0.01121

CONDITION * AI LIVELY INTERACTION, DV = DESIRE FOR TOLERANT PARTNER
Call:
lm(formula = Tolerance ~ AI_date * AI_lively_composite_mc, data = d)
Residuals:
Min 1Q Median 3Q Max
-5.2086 -0.8148 0.0438 1.2023 2.3244
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.0889 0.2091 38.680 <2e-16
AI_datehuman 0.3729 0.2899 1.286 0.2009
AI_lively_composite_mc 0.3662 0.2203 1.662 0.0992
AI_datehuman:AI_lively_composite_mc -0.8150 0.3211 -2.538 0.0125
(Intercept) ***
AI_datehuman
AI_lively_composite_mc .
AI_datehuman:AI_lively_composite_mc *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.558 on 117 degrees of freedom
Multiple R-squared: 0.06474, Adjusted R-squared: 0.04075
F-statistic: 2.699 on 3 and 117 DF, p-value: 0.04892

CONDITION * AI LIVELY INTERACTION, DV = DESIRE FOR LOYAL PARTNER
Call:
lm(formula = Loyalty ~ AI_date * AI_lively_composite_mc, data = d)
Residuals:
Min 1Q Median 3Q Max
-3.1561 -0.7741 0.2671 0.8801 1.3428
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.9225 0.1467 60.835 <2e-16
AI_datehuman 0.4706 0.2033 2.315 0.0224
AI_lively_composite_mc -0.1317 0.1545 -0.853 0.3956
AI_datehuman:AI_lively_composite_mc -0.2884 0.2252 -1.281 0.2028
(Intercept) ***
AI_datehuman *
AI_lively_composite_mc
AI_datehuman:AI_lively_composite_mc
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.093 on 117 degrees of freedom
Multiple R-squared: 0.08413, Adjusted R-squared: 0.06065
F-statistic: 3.583 on 3 and 117 DF, p-value: 0.01599

CONDITION * AI LIVELY INTERACTION, DV = DESIRE FOR ADAPTABLE PARTNER
Call:
lm(formula = Adaptability ~ AI_date * AI_lively_composite_mc,
data = d)
Residuals:
Min 1Q Median 3Q Max
-5.4118 -0.7730 0.0253 1.2651 2.3551
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.09384 0.22552 35.890 <2e-16
AI_datehuman 0.02936 0.31265 0.094 0.9253
AI_lively_composite_mc 0.47964 0.23758 2.019 0.0458
AI_datehuman:AI_lively_composite_mc -0.72303 0.34629 -2.088 0.0390
(Intercept) ***
AI_datehuman
AI_lively_composite_mc *
AI_datehuman:AI_lively_composite_mc *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.681 on 117 degrees of freedom
Multiple R-squared: 0.04158, Adjusted R-squared: 0.01701
F-statistic: 1.692 on 3 and 117 DF, p-value: 0.1725

CONDITION * AI LIVELY INTERACTION, DV = DESIRE FOR RESPECTFUL PARTNER
Call:
lm(formula = Respect ~ AI_date * AI_lively_composite_mc, data = d)
Residuals:
Min 1Q Median 3Q Max
-4.8717 -0.7804 0.2921 1.0239 1.7551
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.7275 0.1591 54.853 <2e-16
AI_datehuman 0.3327 0.2206 1.508 0.1342
AI_lively_composite_mc 0.1054 0.1676 0.629 0.5308
AI_datehuman:AI_lively_composite_mc -0.4397 0.2443 -1.800 0.0745
(Intercept) ***
AI_datehuman
AI_lively_composite_mc
AI_datehuman:AI_lively_composite_mc .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.186 on 117 degrees of freedom
Multiple R-squared: 0.04706, Adjusted R-squared: 0.02262
F-statistic: 1.926 on 3 and 117 DF, p-value: 0.1292

CONDITION * INTEREST IN DATING, DV = INTEREST IN MEETING DATE
Call:
lm(formula = meet_date ~ AI_date * interest1, data = d)
Residuals:
Min 1Q Median 3Q Max
-4.1773 -0.7012 -0.0015 0.8227 2.7271
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.9609 0.1640 30.255 < 2e-16 ***
AI_datehuman -0.1841 0.2272 -0.810 0.4195
interest1 0.4761 0.1060 4.490 1.68e-05 ***
AI_datehuman:interest1 0.3659 0.1546 2.367 0.0196 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.248 on 117 degrees of freedom
Multiple R-squared: 0.3951, Adjusted R-squared: 0.3796
F-statistic: 25.48 on 3 and 117 DF, p-value: 9.332e-13

CONDITION * INTEREST IN DATING, DV = INTEREST IN GOING ON DATE TONIGHT
Call:
lm(formula = date_tonight ~ AI_date * interest1, data = d)
Residuals:
Min 1Q Median 3Q Max
-4.6788 -0.9880 0.2049 0.9975 3.0085
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.8488 0.1916 25.308 < 2e-16 ***
AI_datehuman -0.4190 0.2655 -1.578 0.11727
interest1 0.3381 0.1239 2.729 0.00732 **
AI_datehuman:interest1 0.4654 0.1806 2.577 0.01120 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.458 on 117 degrees of freedom
Multiple R-squared: 0.2848, Adjusted R-squared: 0.2665
F-statistic: 15.53 on 3 and 117 DF, p-value: 1.438e-08

CONDITION * INTEREST IN DATING, DV = INTEREST IN DATING SERVICE
Call:
lm(formula = interest_service ~ AI_date * interest1, data = d)
Residuals:
Min 1Q Median 3Q Max
-3.9772 -0.9772 0.0817 1.0228 3.2465
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.3379 0.2053 21.130 < 2e-16 ***
AI_datehuman 0.3199 0.2845 1.124 0.26310
interest1 0.1648 0.1328 1.242 0.21683
AI_datehuman:interest1 0.5376 0.1935 2.778 0.00637 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.562 on 117 degrees of freedom
Multiple R-squared: 0.1938, Adjusted R-squared: 0.1732
F-statistic: 9.376 on 3 and 117 DF, p-value: 1.328e-05

CONDITION * DESIRE FOR CHILDREN, DV = INTEREST IN DATING SERVICE
Call:
lm(formula = interest_service ~ AI_date * children_want, data = d)
Residuals:
Min 1Q Median 3Q Max
-3.6375 -1.1501 0.2026 1.0958 3.0794
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.6419 0.7133 7.910 1.61e-12 ***
AI_datehuman -1.8040 0.9530 -1.893 0.0608 .
children_want -0.2459 0.1268 -1.939 0.0549 .
AI_datehuman:children_want 0.4058 0.1683 2.411 0.0175 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.688 on 117 degrees of freedom
Multiple R-squared: 0.05877, Adjusted R-squared: 0.03464
F-statistic: 2.435 on 3 and 117 DF, p-value: 0.06826

CONDITION * LONELINESS, DV = INTEREST IN HANGING OUT WITH SOMEONE
Call:
lm(formula = interest_hangout ~ AI_date * lonely_composite, data = d)
Residuals:
Min 1Q Median 3Q Max
-3.5850 -0.5357 0.0071 0.5547 2.5323
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.1157 0.4209 9.778 < 2e-16 ***
AI_datehuman 1.1849 0.5792 2.046 0.04304 *
lonely_composite 0.3520 0.1213 2.902 0.00443 **
AI_datehuman:lonely_composite -0.2977 0.1606 -1.854 0.06629 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.131 on 117 degrees of freedom
Multiple R-squared: 0.07855, Adjusted R-squared: 0.05492
F-statistic: 3.325 on 3 and 117 DF, p-value: 0.02217

CONDITION * INTEREST IN DATING, COMPOSITE DV
Attaching package: 'psych'
The following objects are masked from 'package:ggplot2':
%+%, alpha
Call:
lm(formula = interest_composite ~ AI_date * interest1, data = d)
Residuals:
Min 1Q Median 3Q Max
-3.8642 -0.8465 0.1288 0.7042 2.4721
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.71586 0.14731 32.012 < 2e-16 ***
AI_datehuman -0.09437 0.20416 -0.462 0.644759
interest1 0.32636 0.09526 3.426 0.000846 ***
AI_datehuman:interest1 0.45633 0.13887 3.286 0.001341 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.121 on 117 degrees of freedom
Multiple R-squared: 0.3802, Adjusted R-squared: 0.3643
F-statistic: 23.92 on 3 and 117 DF, p-value: 3.827e-12

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.5455 -0.5455 0.4545 0.0000 0.4545 2.4545
Call:
lm(formula = interest_composite ~ AI_date, data = hi)
Residuals:
Min 1Q Median 3Q Max
-2.1795 -0.6603 0.1538 0.5064 1.5128
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.4872 0.2698 20.335 <2e-16 ***
AI_datehuman 0.3590 0.3816 0.941 0.356
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9729 on 24 degrees of freedom
Multiple R-squared: 0.03556, Adjusted R-squared: -0.004626
F-statistic: 0.8849 on 1 and 24 DF, p-value: 0.3562