Results for:
LSTM Woodbrigde + Dense 512 + Batch 256 + maxlen = 75 + first 5 symbols included
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 499 66
1 34 1214
Accuracy : 0.9448
95% CI : (0.9333, 0.9549)
No Information Rate : 0.706
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.8694
Mcnemar's Test P-Value : 0.001935
Sensitivity : 0.9484
Specificity : 0.9362
Pos Pred Value : 0.9728
Neg Pred Value : 0.8832
Precision : 0.9728
Recall : 0.9484
F1 : 0.9604
Prevalence : 0.7060
Detection Rate : 0.6696
Detection Prevalence : 0.6884
Balanced Accuracy : 0.9423
'Positive' Class : 1
RF mrty=2 + maxlen=complete + first 5 symbols included
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 473 60
1 72 1208
Accuracy : 0.9272
95% CI : (0.9143, 0.9387)
No Information Rate : 0.6994
P-Value [Acc > NIR] : <2e-16
Kappa : 0.8258
Mcnemar's Test P-Value : 0.3384
Sensitivity : 0.9527
Specificity : 0.8679
Pos Pred Value : 0.9437
Neg Pred Value : 0.8874
Precision : 0.9437
Recall : 0.9527
F1 : 0.9482
Prevalence : 0.6994
Detection Rate : 0.6663
Detection Prevalence : 0.7060
Balanced Accuracy : 0.9103
'Positive' Class : 1
Results for:
LSTM Woodbrigde + Dense 512 + Batch 256 + maxlen = 75 + first 5 symbols remove
caret::confusionMatrix(as.factor(test_results$predicted_class),as.factor(test_results$class), positive='1', mode="everything" )
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 466 87
1 72 1188
Accuracy : 0.9123
95% CI : (0.8983, 0.9249)
No Information Rate : 0.7033
P-Value [Acc > NIR] : <2e-16
Kappa : 0.7916
Mcnemar's Test P-Value : 0.2669
Sensitivity : 0.9318
Specificity : 0.8662
Pos Pred Value : 0.9429
Neg Pred Value : 0.8427
Precision : 0.9429
Recall : 0.9318
F1 : 0.9373
Prevalence : 0.7033
Detection Rate : 0.6553
Detection Prevalence : 0.6950
Balanced Accuracy : 0.8990
'Positive' Class : 1
RF mrty=2 + maxlen=complete + first 5 symbols removed
confusionMatrix(as.factor(ctu13_test_vectorized$class),as.factor(ifelse(rfpreds[,1]>0.5,0,1)),positive = "1", mode="everything" )
Confusion Matrix and Statistics
Reference
Prediction 0 1
0 490 43
1 140 1140
Accuracy : 0.8991
95% CI : (0.8843, 0.9126)
No Information Rate : 0.6525
P-Value [Acc > NIR] : < 2.2e-16
Kappa : 0.7691
Mcnemar's Test P-Value : 1.279e-12
Sensitivity : 0.9637
Specificity : 0.7778
Pos Pred Value : 0.8906
Neg Pred Value : 0.9193
Precision : 0.8906
Recall : 0.9637
F1 : 0.9257
Prevalence : 0.6525
Detection Rate : 0.6288
Detection Prevalence : 0.7060
Balanced Accuracy : 0.8707
'Positive' Class : 1
LS0tCnRpdGxlOiAiQVNBSSAyMDIwIFJlc3VsdHMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCiMgUmVzdWx0cyBmb3I6CiMjIyBMU1RNIFdvb2RicmlnZGUgKyBEZW5zZSA1MTIgKyBCYXRjaCAyNTYgKyBtYXhsZW4gPSA3NSArIGZpcnN0IDUgc3ltYm9scyBpbmNsdWRlZApgYGB7ciBlY2hvPUZBTFNFfQpjYXJldDo6Y29uZnVzaW9uTWF0cml4KGFzLmZhY3Rvcih0ZXN0X3Jlc3VsdHMkcHJlZGljdGVkX2NsYXNzKSxhcy5mYWN0b3IodGVzdF9yZXN1bHRzJGNsYXNzKSwgcG9zaXRpdmU9JzEnLCBtb2RlPSJldmVyeXRoaW5nIiApCmBgYAojIyMgUkYgbXJ0eT0yICsgbWF4bGVuPWNvbXBsZXRlICsgZmlyc3QgNSBzeW1ib2xzIGluY2x1ZGVkCmBgYHtyIGVjaG89RkFMU0V9CmNvbmZ1c2lvbk1hdHJpeChhcy5mYWN0b3IoY3R1MTNfdGVzdF92ZWN0b3JpemVkJGNsYXNzKSxhcy5mYWN0b3IoaWZlbHNlKHJmcHJlZHNbLDFdPjAuNSwwLDEpKSxwb3NpdGl2ZSA9ICIxIiwgbW9kZT0iZXZlcnl0aGluZyIgKQpgYGAKIyBSZXN1bHRzIGZvcjoKIyMjIExTVE0gV29vZGJyaWdkZSArIERlbnNlIDUxMiArIEJhdGNoIDI1NiArIG1heGxlbiA9IDc1ICsgZmlyc3QgNSBzeW1ib2xzIHJlbW92ZQoKYGBge3J9CmNhcmV0Ojpjb25mdXNpb25NYXRyaXgoYXMuZmFjdG9yKHRlc3RfcmVzdWx0cyRwcmVkaWN0ZWRfY2xhc3MpLGFzLmZhY3Rvcih0ZXN0X3Jlc3VsdHMkY2xhc3MpLCBwb3NpdGl2ZT0nMScsIG1vZGU9ImV2ZXJ5dGhpbmciICkKYGBgCiMjIyBSRiBtcnR5PTIgKyBtYXhsZW49Y29tcGxldGUgKyBmaXJzdCA1IHN5bWJvbHMgcmVtb3ZlZApgYGB7cn0KY29uZnVzaW9uTWF0cml4KGFzLmZhY3RvcihjdHUxM190ZXN0X3ZlY3Rvcml6ZWQkY2xhc3MpLGFzLmZhY3RvcihpZmVsc2UocmZwcmVkc1ssMV0+MC41LDAsMSkpLHBvc2l0aXZlID0gIjEiLCBtb2RlPSJldmVyeXRoaW5nIiApCgpgYGAKCg==