library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(cluster)
moyenne=c(0,1,3,5,7,9,10,12)
var=c(1,3,5,7,8,9,11,13)
test1=rnorm(100,sample(moyenne,1),sample(var,1))
test2=rnorm(100,sample(moyenne,1),sample(var,1))
test3=rnorm(100,sample(moyenne,1),sample(var,1))
test4=rnorm(100,sample(moyenne,1),sample(var,1))
test5=rnorm(100,sample(moyenne,1),sample(var,1))
test6=rnorm(100,sample(moyenne,1),sample(var,1))
test123=c(test1,test2,test3)
test456=c(test4,test5,test6)
table=data.frame(test123,test456)
plot(table, ylab ="", xlab="",main = "Graph des Datas")
GAP=clusGap(table,FUNcluster = kmeans,K.max = 20)
TabTable=GAP$Tab
plot(GAP,main = "Courbe du Gap")
TabTable=data.frame(TabTable)
xx = seq(1,20,length=20)
y1= TabTable$logW
y2= TabTable$E.logW
plot(exp(y1),col = "blue", ylab ="W", xlab="clusters",main ="Fonction W")
plot(xx,y1,ylim=c(5,8),col = "red", ylab = "", xlab="clusters", main = "logW et E.logW")
lines(xx,y2,type="p",col="green")
res_table=kmeans(table,1)
table_res=data.frame(table,res_table$cluster)
table_res=table_res %>%
mutate(couleurs='red')
centres_table=res_table$centers
plot(table_res$test123,table_res$test456,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table,lwd=3,pch=5,col='black')
table= rbind(matrix(rnorm(150, sd=1) , ncol=2),matrix(rnorm(150,mean=6,sd=1),ncol=2))
table=data.frame(table)
plot(table, ylab ="", xlab="",main = "Graph des Datas")
GAP=clusGap(table,FUNcluster = kmeans,K.max = 20)
TabTable=GAP$Tab
plot(GAP,main = "Courbe du Gap")
TabTable=data.frame(TabTable)
xx = seq(1,20,length=20)
y1= TabTable$logW
y2= TabTable$E.logW
plot(exp(y1),col = "blue", ylab ="W", xlab="clusters",main ="Fonction W")
plot(xx,y1,ylim=c(3,6),col = "red", ylab = "", xlab="clusters", main = "logW et E.logW")
lines(xx,y2,type="p",col="green")
res_table=kmeans(table,2)
table_res=data.frame(table,res_table$cluster)
table_res=table_res %>%
mutate(couleurs=ifelse(table_res$res_table.cluster == 1, 'red','blue'))
centres_table=res_table$centers
plot(table_res$X1,table_res$X2,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table,lwd=3,pch=5,col='black')
table <- rbind(matrix(rnorm(150, sd = 0.1), ncol = 3),
matrix(rnorm(150, mean = 1, sd = 0.1), ncol = 3),
matrix(rnorm(150, mean = 2, sd = 0.1), ncol = 3),
matrix(rnorm(150, mean = 3, sd = 0.1), ncol = 3))
table=data.frame(table)
plot(table,main = "Graph des Datas")
GAP=clusGap(table,FUNcluster = kmeans,K.max = 20)
TabTable=GAP$Tab
plot(GAP,main = "Courbe du Gap")
TabTable=data.frame(TabTable)
xx = seq(1,20,length=20)
y1= TabTable$logW
y2= TabTable$E.logW
plot(exp(y1),col = "blue", ylab ="W", xlab="clusters",main ="Fonction W")
plot(xx,y1,ylim=c(0,6),col = "red", ylab = "", xlab="clusters", main = "logW et E.logW")
lines(xx,y2,type="p",col="green")
res_table=kmeans(table,6)
table_res=data.frame(table,res_table$cluster)
table_res=table_res %>%
mutate(couleurs=ifelse(table_res$res_table.cluster == 1, 'red',ifelse(table_res$res_table.cluster == 2,'#33FFFF',ifelse(table_res$res_table.cluster == 3,'green',ifelse(table_res$res_table.cluster == 4,'#FFCC00',ifelse(table_res$res_table.cluster == 5,'#990099','#999999'))))))
centres_table=res_table$centers
plot(table_res$X1,table_res$X2,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table,lwd=4,pch=4,col='black')
plot(table_res$X1,table_res$X3,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table,lwd=4,pch=4,col='black')
plot(table_res$X1,table_res$X2,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table[,-2],lwd=4,pch=4,col='black')
plot(table_res$X2,table_res$X3,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table[,-1],lwd=4,pch=4,col='black')
plot(table_res$X3,table_res$X1,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table[,-2],lwd=4,pch=4,col='black')
plot(table_res$X3,table_res$X2,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table[,-1],lwd=4,pch=4,col='black')
data("iris")
table=iris[,1:4]
table=data.frame(table)
plot(table,main = "Graph des Datas")
GAP=clusGap(table,FUNcluster = kmeans,K.max = 20)
TabTable=GAP$Tab
plot(GAP,main = "Courbe du Gap")
TabTable=data.frame(TabTable)
xx = seq(1,20,length=20)
y1= TabTable$logW
y2= TabTable$E.logW
plot(exp(y1),col = "blue", ylab ="W", xlab="clusters",main ="Fonction W")
plot(xx,y1,ylim=c(0,6),col = "red", ylab = "", xlab="clusters", main = "logW et E.logW")
lines(xx,y2,type="p",col="green")
### K-Means avec k optimal (ici k=4) (pas forcement 4 en fait mais c’est le debut du “coude”))
res_table=kmeans(table,4)
table_res=data.frame(table,res_table$cluster)
table_res=table_res %>%
mutate(couleurs=ifelse(table_res$res_table.cluster == 1, 'red',ifelse(table_res$res_table.cluster == 2,'#33FFFF',ifelse(table_res$res_table.cluster == 3,'#990099','#999999'))))
centres_table=res_table$centers
plot(table_res$Sepal.Length,table_res$Sepal.Width,col=table_res$couleurs,ylab ="Sepal.Length", xlab="Sepal.Width")
points(centres_table,lwd=4,pch=4,col='black')
plot(table_res$Petal.Length,table_res$Petal.Width,col=table_res$couleurs,ylab ="Petal.Length", xlab="Petal.Width")
points(centres_table[,3:4],lwd=4,pch=4,col='black')
table= rbind(matrix(runif(150,min = 0,max = 10 ) , ncol=2),
matrix(runif(150,min= 2.5,max =7.5 ),ncol=2))
table=data.frame(table)
plot(table)
GAP=clusGap(table,FUNcluster = kmeans,K.max = 20)
TabTable=GAP$Tab
plot(GAP,main = "Courbe du Gap")
TabTable=data.frame(TabTable)
xx = seq(1,20,length=20)
y1= TabTable$logW
y2= TabTable$E.logW
plot(exp(y1),col = "blue", ylab ="W", xlab="clusters",main ="Fonction W")
plot(xx,y1,ylim=c(0,6),col = "red", ylab = "", xlab="clusters", main = "logW et E.logW")
lines(xx,y2,type="p",col="green")
res_table=kmeans(table,1)
table_res=data.frame(table,res_table$cluster)
table_res=table_res %>%
mutate(couleurs='red')
centres_table=res_table$centers
plot(table_res$X1,table_res$X2,col=table_res$couleurs,ylab ="", xlab="")
points(centres_table,lwd=3,pch=5,col='black')
table= rbind(matrix(runif(150,min = 0,max = 10 ) , ncol=2),
matrix(runif(150,min= 0,max =5 ),ncol=2))
table=data.frame(table)
plot(table)
GAP=clusGap(table,FUNcluster = kmeans,K.max = 20)
TabTable=GAP$Tab
plot(GAP,main = "Courbe du Gap")
TabTable=data.frame(TabTable)
xx = seq(1,20,length=20)
y1= TabTable$logW
y2= TabTable$E.logW
plot(exp(y1),col = "blue", ylab ="W", xlab="clusters",main ="Fonction W")
plot(xx,y1,ylim=c(0,6),col = "red", ylab = "", xlab="clusters", main = "logW et E.logW")
lines(xx,y2,type="p",col="green")
res_table=kmeans(table,2)
table_res=data.frame(table,res_table$cluster)
table_res=table_res %>%
mutate(couleurs=ifelse(table_res$res_table.cluster == 1, 'red','blue'))
centres_table=res_table$centers
plot(table_res$X1,table_res$X2,col=table_res$couleurs)
points(centres_table,lwd=3,pch=5,col='black')