MPRAGE Master Sheet

SubID Session MPRAGE_cnr MPRAGE_fwhm_avg MPRAGE_snr_total MPRAGE_snrd_total
8001 MR2 1.7978 4.0485 10.3095 55.3185
8002 MR2 1.7212 4.0225 9.6513 47.8284
8003 MR2 1.7825 4.0336 10.4999 57.2361
8005 MR2 1.9747 4.1300 10.1854 59.3610
8006 MR2 1.7470 4.1339 10.2053 50.0911
8007 MR2 1.7348 3.9592 10.4699 58.5797
8021 MR2 1.5382 4.1032 9.6307 46.2845
8031 MR2 1.4865 4.1731 9.4858 48.3871
8035 MR2 1.4054 4.0961 9.8942 47.4210

Resting State - MRIQC Master Sheet

SubID Session Task dvars_nstd fd_mean fwhm_avg gcor snr tsnr
8001 MR2 rest 65.7456 0.5249 2.5893 0.0096 2.2065 22.3766
8002 MR2 rest 50.5306 0.4665 2.4910 0.0060 3.0218 27.4149
8003 MR2 rest 42.5416 0.2429 2.5509 0.0144 2.7152 33.5972
8005 MR2 rest 42.0742 0.3352 2.6355 0.0149 2.1813 20.9488
8006 MR2 rest 44.3410 0.3267 2.6917 0.0037 2.1273 24.7758
8007 MR2 rest 79.5323 0.8069 2.5869 0.0122 2.1866 23.3300
8021 MR2 rest 43.9344 0.2223 2.5472 0.0052 2.1974 26.4887
8031 MR2 rest 45.8054 0.3392 2.5183 0.0027 2.3546 32.8890
8035 MR2 rest 49.9841 0.3487 2.6666 0.0109 2.5676 28.3374

N-Back Task - MRIQC Master Sheet

SubID Session Task dvars_nstd fd_mean fwhm_avg gcor snr tsnr
8001 MR2 nback 55.4829 0.2735 2.3820 0.0073 1.9906 30.1386
8002 MR2 nback 35.2801 0.1308 2.2357 0.0065 2.7955 37.2530
8003 MR2 nback 47.5065 0.2128 2.3353 0.0145 2.5190 39.5204
8005 MR2 nback 41.0660 0.1221 2.4448 0.0073 1.9486 27.6815
8006 MR2 nback 49.7094 0.2302 2.4114 0.0140 2.0038 33.3648
8007 MR2 nback 70.2438 0.2814 2.3998 0.0123 1.8841 31.3449
8021 MR2 nback 48.9313 0.3056 2.3827 0.0063 1.9637 34.7086
8031 MR2 nback 51.1096 0.3140 2.3465 0.0069 2.1515 36.9407
8035 MR2 nback 55.0200 0.2228 2.4725 0.0131 2.4351 31.2309

DTI Master Sheet

SubID Session meanFA meanRELrms_b1500 tsnr_b1500 outmean_b1500 meanRELrms_b3000 tsnr_b3000 outmean_b3000
8005 MR2 0.2805 0.2408 7.6133 143.7340 0.4481 5.1966 309.7810
8001 MR2 0.3032 0.2975 6.8567 196.5310 0.5307 5.0585 454.4510
8006 MR2 0.3095 0.2866 6.8763 155.5310 0.5461 4.7479 318.9380
8002 MR2 0.2803 0.2808 7.0332 132.4690 0.5115 4.9669 299.8910
8007 MR2 0.2546 0.3280 6.5940 201.9380 0.4438 5.1935 382.7190
8003 MR2 0.2796 0.2773 7.0813 119.2500 0.5389 4.9242 254.4380
8031 MR2 0.2725 0.2696 7.2935 134.8120 0.5111 5.1570 304.5000
8021 MR2 0.2695 0.3788 6.8619 194.9690 0.4695 5.2196 334.5000
8035 MR2 0.3046 0.2479 6.9798 193.2500 0.3850 5.0133 403.5000

pCASL Master Sheet

SubID Session tsnr outmean
8005 MR2 1.2797 5895.5000
8006 MR2 1.3171 5608.0500
8002 MR2 1.9512 6278.2500
8007 MR2 1.6594 6469.0000
8003 MR2 1.6843 5624.3000
8031 MR2 2.0728 6583.4500
8021 MR2 1.3442 6004.5500
8035 MR2 1.2918 5640.7500

T2* Flair Master Sheet

SubID Session snr
8005 MR2 2.3417
8006 MR2 2.4246
8002 MR2 2.0530
8007 MR2 1.7085
8003 MR2 2.0287
8031 MR2 2.4123
8021 MR2 2.4556
8035 MR2 2.4511
RedCap_Report<-read.csv("/Volumes/REACT2/MRI/QC_Output/Reports/RedCap/PRE/REACT_RedCap_FitDemos_3_17_20.csv")
corrplot<-c("SubID",    "fit_date"  ,"fit_vo2_age"  ,"fit_vo2_gender"   ,"fit_bmi"  ,"fit_wc_avg",  "arm_circ_avg","fit_rest_sbp_avg"   ,"fit_rest_dbp_avg" ,"fit_rest_hr_avg"  ,"fit_bp_med"   ,"fit_bp_med_num",  "demo_edu_years",   "history_cig_history",  "demo_smoke",   "ses_earnings", "ses_family_income" ,"psqi_global")
RedCap_for_corrplot<-RedCap_Report[corrplot]
RedCap_for_corrplot[,2:18]<-lapply(RedCap_for_corrplot[,2:18], FUN = as.numeric)
RedCap_for_corrplot<-RedCap_for_corrplot[complete.cases(RedCap_for_corrplot$psqi_global),]
RedCap_for_corrplot<-RedCap_for_corrplot[,-c(12)]
#RedCap_for_corrplot[,2:17]<-lapply(RedCap_for_corrplot[,2:17], FUN = scale)
RedCap_for_corrplot<-RedCap_for_corrplot[,c(1,(5:17))]

MPRAGE_for_corrplot<-MPRAGE.IQMs.df
MPRAGE_for_corrplot$SubID<-as.character(MPRAGE_for_corrplot$SubID)
RedCap_for_corrplot$SubID<-as.character(RedCap_for_corrplot$SubID)
df_for_corrplot<-left_join(MPRAGE_for_corrplot, RedCap_for_corrplot)
## Joining, by = "SubID"
corrplot(cor(df_for_corrplot[,3:19]) ,order="FPC", tl.cex = .75)

MPRAGE IQMs + DHQ RedCap

RedCap_Report<-read.csv("/Volumes/REACT2/MRI/QC_Output/Reports/RedCap/PRE/REACT_RedCap_DHQ_03_17_20.csv")
corrplot<-c("SubID",     "nci_sex", "nci_age"   , "fit_bmi" , "fit_wt_avg"  , "fit_wc_avg"  , "nci_energy", "nci_energy_fat"    , "nci_energy_carb" , "nci_energy_protein"  , "nci_energy_alcohol"  , "nci_total_hei"   , "nci_hei_calories_fat"    , "nci_hei_calories_sugar")
RedCap_for_corrplot<-RedCap_Report[corrplot]
RedCap_for_corrplot[,3:14]<-lapply(RedCap_for_corrplot[,3:14], FUN = as.numeric)
RedCap_for_corrplot<-RedCap_for_corrplot[complete.cases(RedCap_for_corrplot$nci_hei_calories_fat),]
#RedCap_for_corrplot[,2:17]<-lapply(RedCap_for_corrplot[,2:17], FUN = scale)
#RedCap_for_corrplot<-RedCap_for_corrplot[,c(1,(5:17))]
#RedCap_for_corrplot<-RedCap_Report[corrplot]
#RedCap_for_corrplot[,2:18]<-lapply(RedCap_for_corrplot[,2:18], FUN = as.numeric)
#RedCap_for_corrplot<-RedCap_for_corrplot[complete.cases(RedCap_for_corrplot$psqi_global),]
#RedCap_for_corrplot<-RedCap_for_corrplot[,-c(12)]
#RedCap_for_corrplot[,2:17]<-lapply(RedCap_for_corrplot[,2:17], FUN = scale)
#RedCap_for_corrplot<-RedCap_for_corrplot[,c(1,(5:17))]
RedCap_for_corrplot<-RedCap_for_corrplot[,-c(2)]

MPRAGE_for_corrplot<-MPRAGE.IQMs.df
MPRAGE_for_corrplot$SubID<-as.character(MPRAGE_for_corrplot$SubID)
RedCap_for_corrplot$SubID<-as.character(RedCap_for_corrplot$SubID)
df_for_corrplot<-left_join(MPRAGE_for_corrplot, RedCap_for_corrplot)
df_for_corrplot<-df_for_corrplot[complete.cases(df_for_corrplot),]
corrplot(cor(df_for_corrplot[,3:18]) ,order="hclust", tl.cex = .75)

MPRAGE IQMs + Cognitive RedCap

RedCap_Report<-read.csv("/Volumes/REACT2/MRI/QC_Output/Reports/RedCap/PRE/REACT_RecCap_Cognitive_03_17_20.csv")
corrplot<-c("SubID",     "rbans_17", "rbans_18" , "rbans_19"    , "rbans_20"    , "rbans_23"    , "rbans_24"    , "rbans_25", "rbans_26", "rbans_27", "rbans_28"    , "rbans_29"    , "rbans_30"    , "rbans_34", "rbans_35"    , "rbans_36", "cog2_swm",   "time_2item",   "time_3item","time_4item","accur_2item",    "accur_3item",  "accur_4item",  "wtar_raw", "igt_total_raw",    "raw_dccs", "ls_raw",   "raw_tvpt", "raw_fic"   , "cog2_stroop" , "congruent_rt_computer"   , "congruent_accur_computer"    , "incong_rt_computer"  , "incong_accur_computer",  "neutral_rt_computer","neutral_accur_computer", "a_raw", "cog1_trailmaking","b_raw")
RedCap_for_corrplot<-RedCap_Report[corrplot]
RedCap_for_corrplot[,2:39]<-lapply(RedCap_for_corrplot[,2:39], FUN = as.numeric)

#RedCap_for_corrplot<-RedCap_for_corrplot[complete.cases(RedCap_for_corrplot$),]
#RedCap_for_corrplot<-RedCap_for_corrplot[,-c(12)]
#RedCap_for_corrplot[,2:17]<-lapply(RedCap_for_corrplot[,2:17], FUN = scale)
#RedCap_for_corrplot<-RedCap_for_corrplot[,c(1,(5:17))]
#RedCap_for_corrplot<-RedCap_Report[corrplot]
#RedCap_for_corrplot[,2:18]<-lapply(RedCap_for_corrplot[,2:18], FUN = as.numeric)
#RedCap_for_corrplot<-RedCap_for_corrplot[complete.cases(RedCap_for_corrplot$psqi_global),]
#RedCap_for_corrplot<-RedCap_for_corrplot[,-c(12)]
#RedCap_for_corrplot[,2:17]<-lapply(RedCap_for_corrplot[,2:17], FUN = scale)
#RedCap_for_corrplot<-RedCap_for_corrplot[,c(1,(5:17))]


Rbanz_for_corrplot<-RedCap_for_corrplot[, c(1, 2:16)]
Rbanz_for_corrplot<-Rbanz_for_corrplot[complete.cases(Rbanz_for_corrplot),]
MPRAGE_for_corrplot<-MPRAGE.IQMs.df
MPRAGE_for_corrplot$SubID<-as.character(MPRAGE_for_corrplot$SubID)
Rbanz_for_corrplot$SubID<-as.character(Rbanz_for_corrplot$SubID)
RBANZ_MRI_for_corrplot<-left_join(Rbanz_for_corrplot, MPRAGE_for_corrplot)
RBANZ_MRI_for_corrplot<-RBANZ_MRI_for_corrplot[,-c(17)]
RBANZ_MRI_for_corrplot[,2:20]<-lapply(RBANZ_MRI_for_corrplot[,2:20], FUN = as.numeric)
RBANZ_MRI_for_corrplot<-RBANZ_MRI_for_corrplot[complete.cases(RBANZ_MRI_for_corrplot),]

COG2_swm_for_corrplot<-RedCap_for_corrplot[, c(1, 17:23)]
COG2_swm_for_corrplot<-COG2_swm_for_corrplot[complete.cases(COG2_swm_for_corrplot),]
COG2_swm_for_corrplot$SubID<-as.character(COG2_swm_for_corrplot$SubID)
COG2_swm_MRI_for_corrplot<-left_join(COG2_swm_for_corrplot, MPRAGE_for_corrplot)
COG2_swm_MRI_for_corrplot<-COG2_swm_MRI_for_corrplot[,-c(2,9)]
COG2_swm_MRI_for_corrplot[,2:11]<-lapply(COG2_swm_MRI_for_corrplot[,2:11], FUN = as.numeric)
COG2_swm_MRI_for_corrplot<-COG2_swm_MRI_for_corrplot[complete.cases(COG2_swm_MRI_for_corrplot),]


COG2_others_for_corrplot<-RedCap_for_corrplot[, c(1, 24:29)]
COG2_others_for_corrplot<-COG2_others_for_corrplot[complete.cases(COG2_others_for_corrplot),]
COG2_others_for_corrplot$SubID<-as.character(COG2_others_for_corrplot$SubID)
COG2_others_MRI_for_corrplot<-left_join(COG2_others_for_corrplot, MPRAGE_for_corrplot)
COG2_others_MRI_for_corrplot<-COG2_others_MRI_for_corrplot[,-c(8)]
COG2_others_MRI_for_corrplot[,2:11]<-lapply(COG2_others_MRI_for_corrplot[,2:11], FUN = as.numeric)
COG2_others_MRI_for_corrplot<-COG2_others_MRI_for_corrplot[complete.cases(COG2_others_MRI_for_corrplot),]

COG2_stroop_for_corrplot<-RedCap_for_corrplot[, c(1, 30:36)]
COG2_stroop_for_corrplot<-COG2_stroop_for_corrplot[complete.cases(COG2_stroop_for_corrplot),]
COG2_stroop_for_corrplot$SubID<-as.character(COG2_stroop_for_corrplot$SubID)
COG2_stroop_MRI_for_corrplot<-left_join(COG2_stroop_for_corrplot, MPRAGE_for_corrplot)
COG2_stroop_MRI_for_corrplot<-COG2_stroop_MRI_for_corrplot[,-c(2,9)]
COG2_stroop_MRI_for_corrplot[,2:11]<-lapply(COG2_stroop_MRI_for_corrplot[,2:11], FUN = as.numeric)
COG2_stroop_MRI_for_corrplot<-COG2_stroop_MRI_for_corrplot[complete.cases(COG2_stroop_MRI_for_corrplot),]

COG1_Trail_for_corrplot<-RedCap_for_corrplot[, c(1, 37:39)]
COG1_Trail_for_corrplot<-COG1_Trail_for_corrplot[complete.cases(COG1_Trail_for_corrplot),]

MPRAGE IQMs + RBANZ RedCap

corrplot(cor(RBANZ_MRI_for_corrplot[,2:20]) ,order="hclust", tl.cex = .75)

MPRAGE IQMs + Cog2_swm RedCap

corrplot(cor(COG2_swm_MRI_for_corrplot[,2:11]) ,order="hclust", tl.cex = .75)

MPRAGE IQMs + Cog2 Stroop RedCap

corrplot(cor(COG2_stroop_MRI_for_corrplot[,2:11]) ,order="hclust", tl.cex = .75)

MPRAGE IQMs + Cog2 OTHERS RedCap

corrplot(cor(COG2_others_MRI_for_corrplot[,2:11]) ,order="hclust", tl.cex = .75)