per County
Baden-Württemberg
url <- "https://sozialministerium.baden-wuerttemberg.de/fileadmin/redaktion/m-sm/intern/downloads/Downloads_Gesundheitsschutz/Tabelle_Coronavirus-Faelle-BW.xlsx"
destfile <- "Tabelle_Coronavirus_Faelle_BW.xlsx"
curl::curl_download(url, destfile)
bw_raw<- read_excel(destfile, skip=6)
bw <- bw_raw[, 1:2]
bw_t=bw; colnames(bw_t) <- c("County", "Cases")
kable(bw_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
County
|
Cases
|
|
Alb-Donau-Kreis
|
271
|
|
Baden-Baden (Stadtkreis)
|
100
|
|
Biberach
|
275
|
|
Böblingen
|
783
|
|
Bodenseekreis
|
219
|
|
Breisgau-Hochschwarzwald
|
585
|
|
Calw
|
379
|
|
Emmendingen
|
368
|
|
Enzkreis
|
175
|
|
Esslingen
|
1003
|
|
Freiburg im Breisgau (Stadtkreis)
|
586
|
|
Freudenstadt
|
210
|
|
Göppingen
|
463
|
|
Heidelberg (Stadtkreis)
|
189
|
|
Heidenheim
|
226
|
|
Heilbronn
|
485
|
|
Heilbronn (Stadtkreis)
|
220
|
|
Hohenlohekreis
|
530
|
|
Karlsruhe
|
373
|
|
Karlsruhe (Stadtkreis)
|
177
|
|
Konstanz
|
229
|
|
Lörrach
|
333
|
|
Ludwigsburg
|
934
|
|
Main-Tauber-Kreis
|
177
|
|
Mannheim (Stadtkreis)
|
256
|
|
Neckar-Odenwald-Kreis
|
125
|
|
Ortenaukreis
|
323
|
|
Ostalbkreis
|
400
|
|
Pforzheim (Stadtkreis)
|
59
|
|
Rastatt
|
335
|
|
Ravensburg
|
387
|
|
Rems-Murr-Kreis
|
600
|
|
Reutlingen
|
586
|
|
Rhein-Neckar-Kreis
|
703
|
|
Rottweil
|
233
|
|
Schwäbisch Hall
|
450
|
|
Schwarzwald-Baar-Kreis
|
284
|
|
Sigmaringen
|
478
|
|
Stuttgart
|
901
|
|
Tübingen
|
819
|
|
Tuttlingen
|
197
|
|
Ulm (Stadtkreis)
|
138
|
|
Waldshut
|
137
|
|
Zollernalbkreis
|
479
|
|
Summe
|
17180
|
|
NA
|
NA
|
|
Hinweis: Es handelt sich bei den Zahlen immer um einen vorläufigen Datenstand. Änderungen sind durch Nachmeldungen und Streichungen möglich. Aufgrund des Meldeverzugs zwischen dem Bekanntwerden neuer Fälle vor Ort und der Übermittlung an das Landesgesundheitsamt kann es mitunter auch deutliche Abweichungen zu den von den kommunalen Gesundheitsämtern aktuell herausgegebenen Zahlen geben. Dafür bitten wir um Verständnis.
|
NA
|
Bayern
webpage_bayern <- read_html("https://www.lgl.bayern.de/gesundheit/infektionsschutz/infektionskrankheiten_a_z/coronavirus/karte_coronavirus/index.htm")
bayern <- html_nodes(webpage_bayern, "table") # tell R to use tables
bayern_raw <- webpage_bayern %>% # tell R which table to use
html_nodes("table") %>%
. [3]%>% # use first table (there is only one)
html_table(fill=T)
bayern=bayern_raw[[1]]
bayern=bayern[,1:5]
colnames(bayern) <- c("NAME_2", "Cases", "New Cases", "Cases/100k", "Deaths")
b_t=bayern; colnames(b_t) <- c("County", "Cases", "New Cases", "Cases/100k", "Deaths")
kable(b_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
County
|
Cases
|
New Cases
|
Cases/100k
|
Deaths
|
|
Aichach-Friedberg
|
164.000
|
(+ 10)
|
122,76
|
50,90
|
|
Altötting
|
233.000
|
(+ 29)
|
209,51
|
124,09
|
|
Amberg Stadt
|
34.000
|
(+ 8)
|
81,01
|
59,57
|
|
Amberg-Sulzbach
|
142.000
|
(+ 21)
|
137,72
|
83,41
|
|
Ansbach
|
250.000
|
(+ 20)
|
135,91
|
70,67
|
|
Ansbach Stadt
|
41.000
|
(+ 7)
|
97,98
|
52,57
|
|
Aschaffenburg
|
210.000
|
(+ 23)
|
120,55
|
53,96
|
|
Aschaffenburg Stadt
|
66.000
|
(+ 3)
|
93,58
|
28,36
|
|
Augsburg
|
217.000
|
|
86,27
|
25,84
|
|
Augsburg Stadt
|
218.000
|
(+ 24)
|
73,86
|
33,54
|
|
Bad Kissingen
|
122.000
|
(+ 8)
|
118,20
|
65,88
|
|
Bad Tölz
|
241.000
|
(+ 12)
|
189,43
|
79,39
|
|
Bamberg
|
248.000
|
(+ 8)
|
168,61
|
63,91
|
|
Bamberg Stadt
|
88.000
|
(+ 1)
|
113,41
|
34,80
|
|
Bayreuth
|
178.000
|
(+ 26)
|
171,72
|
84,90
|
|
Bayreuth Stadt
|
86.000
|
(+ 13)
|
115,19
|
56,26
|
|
Berchtesgadener Land
|
140.000
|
(+ 11)
|
132,42
|
70,94
|
|
Cham
|
261.000
|
(+ 18)
|
204,09
|
66,47
|
|
Coburg
|
66.000
|
|
75,94
|
31,07
|
|
Coburg Stadt
|
23.000
|
|
55,76
|
16,97
|
|
Dachau
|
390.000
|
|
253,44
|
106,57
|
|
Deggendorf
|
146.000
|
(+ 5)
|
122,35
|
28,49
|
|
Dillingen a.d. Donau
|
80.000
|
(+ 6)
|
83,32
|
49,99
|
|
Dingolfing-Landau
|
123.000
|
(+ 13)
|
127,84
|
47,81
|
|
Donau-Ries
|
173.000
|
(+ 35)
|
129,59
|
80,15
|
|
Ebersberg
|
265.000
|
(+ 23)
|
186,43
|
80,91
|
|
Eichstätt
|
122.000
|
(+ 14)
|
92,19
|
52,89
|
|
Erding
|
397.000
|
(+ 26)
|
288,39
|
106,06
|
|
Erlangen Stadt
|
92.000
|
(+ 20)
|
82,17
|
36,62
|
|
Erlangen-Höchstadt
|
112.000
|
(+ 25)
|
82,19
|
40,36
|
|
Forchheim
|
132.000
|
(+ 11)
|
113,70
|
49,96
|
|
Freising
|
643.000
|
(+ 28)
|
358,99
|
137,34
|
|
Freyung-Grafenau
|
99.000
|
(+ 3)
|
126,35
|
47,22
|
|
Fürstenfeldbruck
|
458.000
|
(+ 16)
|
208,83
|
82,98
|
|
Fürth
|
236.000
|
(+ 57)
|
201,04
|
100,52
|
|
Fürth Stadt
|
143.000
|
(+ 41)
|
111,94
|
46,18
|
|
Garmisch-Partenkirchen
|
177.000
|
(+ 38)
|
200,07
|
100,60
|
|
Günzburg
|
138.000
|
(+ 37)
|
109,74
|
54,87
|
|
Haßberge
|
79.000
|
(+ 2)
|
93,38
|
46,10
|
|
Hof
|
183.000
|
(+ 17)
|
192,00
|
111,21
|
|
Hof Stadt
|
60.000
|
(+ 8)
|
130,63
|
78,38
|
|
Ingolstadt Stadt
|
171.000
|
(+ 33)
|
124,83
|
84,68
|
|
Kaufbeuren Stadt
|
52.000
|
(+ 7)
|
118,47
|
68,35
|
|
Kelheim
|
235.000
|
(+ 20)
|
192,22
|
109,60
|
|
Kempten Stadt
|
51.000
|
(+ 3)
|
74,01
|
24,67
|
|
Kitzingen
|
49.000
|
(+ 12)
|
53,90
|
22,00
|
|
Kronach
|
61.000
|
(+ 3)
|
90,86
|
25,32
|
|
Kulmbach
|
99.000
|
(+ 8)
|
137,80
|
41,76
|
|
Landsberg am Lech
|
206.000
|
(+ 31)
|
171,57
|
79,95
|
|
Landshut
|
368.000
|
(+ 20)
|
231,89
|
102,71
|
|
Landshut Stadt
|
153.000
|
(+ 6)
|
211,31
|
109,11
|
|
Lichtenfels
|
115.000
|
(+ 4)
|
172,06
|
86,78
|
|
Lindau (Bodensee)
|
176.000
|
(+ 9)
|
215,50
|
93,06
|
|
Main-Spessart
|
91.000
|
(+ 5)
|
72,01
|
33,24
|
|
Memmingen Stadt
|
31.000
|
|
70,72
|
9,12
|
|
Miesbach
|
380.000
|
(+ 21)
|
381,04
|
142,39
|
|
Miltenberg
|
148.000
|
|
114,95
|
55,92
|
|
Mühldorf a.Inn
|
269.000
|
(+ 49)
|
233,41
|
144,03
|
|
München
|
833.000
|
(+ 103)
|
238,77
|
86,85
|
|
München Stadt
|
3.370
|
(+ 322)
|
229,02
|
70,88
|
|
Neu-Ulm
|
219.000
|
(+ 8)
|
125,72
|
60,85
|
|
Neuburg-Schrobenhausen
|
118.000
|
(+ 10)
|
122,05
|
57,92
|
|
Neumarkt i.d.Opf.
|
138.000
|
(+ 7)
|
103,32
|
51,66
|
|
Neustadt a.d. Aisch-Bad Windsheim
|
79.000
|
(+ 5)
|
78,71
|
33,88
|
|
Neustadt a.d. Waldnaab
|
373.000
|
(+ 30)
|
395,33
|
261,79
|
|
Nürnberg Stadt
|
372.000
|
(+ 14)
|
71,76
|
33,95
|
|
Nürnberger Land
|
298.000
|
(+ 48)
|
174,92
|
89,22
|
|
Oberallgäu
|
121.000
|
(+ 11)
|
77,88
|
28,32
|
|
Ostallgäu
|
280.000
|
(+ 22)
|
199,55
|
113,32
|
|
Passau
|
239.000
|
(+ 21)
|
124,45
|
74,46
|
|
Passau Stadt
|
71.000
|
(+ 11)
|
135,32
|
78,14
|
|
Pfaffenhofen a.d.Ilm
|
183.000
|
(+ 15)
|
143,92
|
82,58
|
|
Regen
|
79.000
|
(+ 9)
|
101,73
|
50,22
|
|
Regensburg
|
239.000
|
(+ 22)
|
123,47
|
52,69
|
|
Regensburg Stadt
|
238.000
|
(+ 16)
|
155,95
|
59,63
|
|
Rhön-Grabfeld
|
67.000
|
(+ 8)
|
84,08
|
41,41
|
|
Rosenheim
|
1.093
|
(+ 85)
|
418,80
|
181,24
|
|
Rosenheim Stadt
|
182.000
|
(+ 29)
|
287,41
|
104,23
|
|
Roth
|
158.000
|
(+ 30)
|
124,45
|
52,77
|
|
Rottal-Inn
|
394.000
|
(+ 24)
|
326,54
|
167,41
|
|
Schwabach Stadt
|
40.000
|
(+ 3)
|
98,06
|
49,03
|
|
Schwandorf
|
216.000
|
(+ 28)
|
146,75
|
92,40
|
|
Schweinfurt
|
181.000
|
(+ 11)
|
157,25
|
87,75
|
|
Schweinfurt Stadt
|
67.000
|
(+ 5)
|
124,00
|
77,73
|
|
Starnberg
|
346.000
|
|
254,24
|
80,09
|
|
Straubing Stadt
|
153.000
|
(+ 20)
|
320,12
|
175,75
|
|
Straubing-Bogen
|
198.000
|
(+ 30)
|
196,72
|
124,19
|
|
Tirschenreuth
|
722.000
|
(+ 54)
|
995,81
|
521,35
|
|
Traunstein
|
403.000
|
(+ 56)
|
227,57
|
132,70
|
|
Unterallgäu
|
169.000
|
(+ 14)
|
117,33
|
49,99
|
|
Weiden Stadt
|
125.000
|
(+ 16)
|
293,98
|
164,63
|
|
Weilheim-Schongau
|
273.000
|
(+ 11)
|
201,70
|
79,06
|
|
Weißenburg-Gunzenhausen
|
142.000
|
(+ 6)
|
150,43
|
66,74
|
|
Wunsiedel i.Fichtelgebirge
|
351.000
|
(+ 62)
|
479,65
|
259,64
|
|
Würzburg
|
259.000
|
(+ 12)
|
160,04
|
53,76
|
|
Würzburg Stadt
|
329.000
|
(+ 11)
|
257,27
|
87,58
|
|
Gesamtergebnis
|
23.049
|
(+ 2.087)
|
176,26
|
77,77
|
Rheinland-Pfalz
webpage_rp <- read_html("https://msagd.rlp.de/de/unsere-themen/gesundheit-und-pflege/gesundheitliche-versorgung/oeffentlicher-gesundheitsdienst-hygiene-und-infektionsschutz/infektionsschutz/informationen-zum-coronavirus-sars-cov-2/")
rp<- html_nodes(webpage_rp, "table") # tell R to use tables
rp_counties <- webpage_rp %>% # tell R which table to use
html_nodes("table") %>%
. [1]%>% # use first table
html_table(fill=T)
corona_rp=rp_counties[[1]]
corona_rp=corona_rp[c(-1,-26),] # table with just counties
rp_t=corona_rp; colnames(rp_t) <- c("County", "Cases", "Deaths")
kable(rp_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
|
County
|
Cases
|
Deaths
|
|
2
|
Ahrweiler
|
83
|
1
|
|
3
|
Altenkirchen
|
60
|
1
|
|
4
|
Alzey-Worms
|
98
|
|
|
5
|
Bad Dürkheim
|
207
|
3
|
|
6
|
Bad Kreuznach
|
131
|
1
|
|
7
|
Bernkastel-Wittlich
|
76
|
|
|
8
|
Birkenfeld
|
44
|
|
|
9
|
Bitburg-Prüm
|
119
|
|
|
10
|
Cochem-Zell
|
116
|
|
|
11
|
Donnersbergkreis
|
70
|
1
|
|
12
|
Germersheim
|
84
|
1
|
|
13
|
Kaiserslautern
|
64
|
|
|
14
|
Kusel
|
59
|
|
|
15
|
Mainz-Bingen
|
184
|
2
|
|
16
|
Mayen-Koblenz
|
252
|
2
|
|
17
|
Neuwied
|
156
|
2
|
|
18
|
Rhein-Hunsrück
|
118
|
|
|
19
|
Rhein-Lahn-Kreis
|
104
|
2
|
|
20
|
Rhein-Pfalz-Kreis
|
113
|
|
|
21
|
Südliche Weinstr.
|
114
|
|
|
22
|
Südwestpfalz
|
64
|
2
|
|
23
|
Trier-Saarburg
|
103
|
1
|
|
24
|
Vulkaneifel
|
65
|
|
|
25
|
Westerwaldkreis
|
184
|
3
|
|
27
|
Frankenthal
|
25
|
|
|
28
|
Kaiserslautern
|
69
|
1
|
|
29
|
Koblenz
|
163
|
7
|
|
30
|
Landau i.d.Pfalz
|
42
|
|
|
31
|
Ludwigshafen
|
109
|
|
|
32
|
Mainz
|
238
|
|
|
33
|
Neustadt Weinst.
|
67
|
1
|
|
34
|
Pirmasens
|
20
|
|
|
35
|
Speyer
|
34
|
|
|
36
|
Trier
|
70
|
|
|
37
|
Worms
|
102
|
2
|
|
38
|
Zweibrücken
|
20
|
|
|
39
|
Stand: 04.04.2020; 10 Uhr
|
|
|
Nordrhein-Westfalen
webpage_nrw <- read_html("https://www.mags.nrw/coronavirus-fallzahlen-nrw")
nrw_raw <- html_nodes(webpage_nrw, "table") # tell R to use tables
nrw_raw <- webpage_nrw %>% # tell R which table to use
html_nodes("table") %>%
. [1]%>% # use first table (there is only one)
html_table(fill=T)
nrw=nrw_raw[[1]]
colnames(nrw) <- c("NAME_2", "Cases")
nrw_t=nrw; colnames(nrw_t) <- c("County", "Cases", "Deaths")
kable(nrw_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
County
|
Cases
|
Deaths
|
|
Aachen & Städteregion Aachen
|
1.210
|
27
|
|
Bielefeld
|
205.000
|
1
|
|
Bochum
|
301.000
|
10
|
|
Bonn
|
370.000
|
3
|
|
Borken (Kreis)
|
609.000
|
9
|
|
Bottrop
|
55.000
|
1
|
|
Coesfeld (Kreis)
|
375.000
|
7
|
|
Dortmund
|
380.000
|
1
|
|
Duisburg
|
379.000
|
2
|
|
Düren (Kreis)
|
335.000
|
9
|
|
Düsseldorf
|
543.000
|
4
|
|
Ennepe-Ruhr-Kreis
|
229.000
|
1
|
|
Essen
|
481.000
|
9
|
|
Euskirchen (Kreis)
|
165.000
|
2
|
|
Gelsenkirchen
|
159.000
|
2
|
|
Gütersloh (Kreis)
|
446.000
|
3
|
|
Hagen
|
96.000
|
2
|
|
Hamm
|
217.000
|
4
|
|
Heinsberg (Kreis)
|
1.432
|
40
|
|
Herford (Kreis)
|
213.000
|
1
|
|
Herne
|
68.000
|
NA
|
|
Hochsauerlandkreis (Kreis)
|
346.000
|
1
|
|
Höxter (Kreis)
|
99.000
|
1
|
|
Kleve (Kreis)
|
285.000
|
3
|
|
Köln
|
1.694
|
26
|
|
Krefeld
|
264.000
|
1
|
|
Leverkusen
|
146.000
|
1
|
|
Lippe (Kreis)
|
429.000
|
3
|
|
Märkischer Kreis
|
175.000
|
3
|
|
Mettmann (Kreis)
|
484.000
|
9
|
|
Minden-Lübbecke (Kreis)
|
385.000
|
1
|
|
Mönchengladbach
|
250.000
|
1
|
|
Mülheim / Ruhr
|
96.000
|
2
|
|
Münster
|
537.000
|
2
|
|
Oberbergischer Kreis
|
303.000
|
2
|
|
Oberhausen
|
91.000
|
NA
|
|
Olpe (Kreis)
|
193.000
|
2
|
|
Paderborn (Kreis)
|
338.000
|
5
|
|
Recklinghausen (Kreis)
|
490.000
|
1
|
|
Remscheid
|
89.000
|
1
|
|
Rhein-Erft-Kreis
|
514.000
|
7
|
|
Rheinisch-Bergischer Kreis
|
236.000
|
3
|
|
Rhein-Kreis Neuss
|
425.000
|
6
|
|
Rhein-Sieg-Kreis
|
675.000
|
3
|
|
Siegen-Wittgenstein (Kreis)
|
140.000
|
2
|
|
Soest (Kreis)
|
220.000
|
1
|
|
Solingen
|
132.000
|
1
|
|
Steinfurt (Kreis)
|
574.000
|
5
|
|
Unna (Kreis)
|
282.000
|
3
|
|
Viersen (Kreis)
|
353.000
|
7
|
|
Warendorf (Kreis)
|
341.000
|
2
|
|
Wesel (Kreis)
|
267.000
|
2
|
|
Wuppertal
|
284.000
|
5
|
|
Gesamt
|
19.405
|
250
|
Thüringen
webpage_thu <- read_html("https://www.landesregierung-thueringen.de/corona-bulletin/")
thu_raw <- html_nodes(webpage_thu, "table") # tell R to use tables
thu_raw <- webpage_thu %>% # tell R which table to use
html_nodes("table") %>%
. [2]%>% # use first table (there is only one)
html_table(fill=T)
thu=thu_raw[[1]]
thu=thu[,c(1,3,8)]
colnames(thu) <- c("County", "Cases", "Deaths")
thu_t=thu
kable(thu_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
County
|
Cases
|
Deaths
|
|
Altenburger Land
|
30
|
NA
|
|
Eichsfeld
|
64
|
1
|
|
Gotha
|
34
|
NA
|
|
Greiz
|
175
|
5
|
|
Hildburghausen
|
7
|
NA
|
|
Ilm-Kreis
|
80
|
1
|
|
Kyffhäuserkreis
|
27
|
NA
|
|
Nordhausen
|
20
|
NA
|
|
Saale-Holzland-Kreis
|
36
|
NA
|
|
Saale-Orla-Kreis
|
61
|
1
|
|
Saalfeld-Rudolstadt
|
48
|
NA
|
|
Schmalkalden-Meiningen
|
35
|
NA
|
|
Sömmerda
|
29
|
NA
|
|
Sonneberg
|
34
|
1
|
|
Unstrut-Hainich-Kreis
|
29
|
NA
|
|
Wartburgkreis
|
28
|
NA
|
|
Weimarer Land
|
36
|
NA
|
|
Eisenach
|
8
|
NA
|
|
Erfurt
|
94
|
NA
|
|
Gera
|
36
|
NA
|
|
Jena
|
117
|
1
|
|
Suhl
|
9
|
NA
|
|
Weimar
|
43
|
NA
|
|
Summe:
|
1080
|
10
|
Sachsen
webpage_sachsen <- read_html("https://www.coronavirus.sachsen.de/infektionsfaelle-in-sachsen-4151.html")
sachsen_raw <- html_nodes(webpage_sachsen, "table") # tell R to use tables
sachsen_raw <- webpage_sachsen %>% # tell R which table to use
html_nodes("table") %>%
. [1]%>% # use first table (there is only one)
html_table(fill=T)
sachsen=sachsen_raw[[1]]
colnames(sachsen) <- c("NAME_2", "Cases")
s_t=sachsen; colnames(s_t)<-c("County", "Cases", "Cases/100k", "Deaths")
kable(s_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "550px")
|
County
|
Cases
|
Cases/100k
|
Deaths
|
|
Landeshauptstadt Dresden
|
407 (+4)
|
73
|
4
|
|
Stadt Chemnitz
|
143 (+5)
|
58
|
2
|
|
Stadt Leipzig
|
403 (+25)
|
69
|
1
|
|
Landkreis Bautzen
|
206 (+5)
|
68
|
2
|
|
Erzgebirgskreis
|
271 (+32)
|
80
|
5
|
|
Landkreis Görlitz
|
98 (+9)
|
38
|
3
|
|
Landkreis Leipzig
|
125 (+6)
|
48
|
1
|
|
Landkreis Meißen
|
115 (+10)
|
47
|
3
|
|
Landkreis Mittelsachsen
|
159 (+18)
|
52
|
1
|
|
Landkreis Nordsachsen
|
73 (+0)
|
37
|
|
|
Landkreis Sächsische Schweiz-Osterzgebirge
|
226 (+26)
|
92
|
|
|
Vogtlandkreis
|
134 (+6)
|
59
|
1
|
|
Landkreis Zwickau
|
483 (+51)
|
152
|
9
|
|
Gesamtzahl
|
2.843 (+197)
|
70
|
32 (Anteil 1,1%)
|
Brandenburg
webpage_bb <- read_html("https://msgiv.brandenburg.de/msgiv/de/presse/pressemitteilungen/detail/~04-04-2020-corona-faelle-stand-04042020-08-00-uhr")
bb_raw <- html_nodes(webpage_bb, "table") # tell R to use tables
bb_raw <- webpage_bb %>% # tell R which table to use
html_nodes("table") %>%
. [1]%>% # use first table (there is only one)
html_table(fill=T)
bb=bb_raw[[1]]
bb=bb[-1,c(1,3,5)]
bb_t=bb; colnames(bb_t) <- c("County", "Cases", "Deaths")
kable(bb_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
|
County
|
Cases
|
Deaths
|
|
2
|
Barnim
|
102
|
2
|
|
3
|
Brandenburg a. d. Havel
|
31
|
|
|
4
|
Cottbus
|
34
|
|
|
5
|
Dahme-Spreewald
|
115
|
2
|
|
6
|
Elbe-Elster
|
52
|
1
|
|
7
|
Frankfurt (Oder)
|
12
|
|
|
8
|
Havelland
|
81
|
|
|
9
|
Märkisch-Oderland
|
108
|
1
|
|
10
|
Oberhavel
|
131
|
1
|
|
11
|
Oberspreewald-Lausitz
|
28
|
|
|
12
|
Oder-Spree
|
83
|
|
|
13
|
Ostprignitz-Ruppin
|
21
|
|
|
14
|
Potsdam
|
216
|
6
|
|
15
|
Potsdam-Mittelmark
|
182
|
4
|
|
16
|
Prignitz
|
9
|
|
|
17
|
Spree-Neiße
|
49
|
|
|
18
|
Teltow-Fläming
|
67
|
|
|
19
|
Uckermark
|
22
|
1
|
|
20
|
Brandenburg gesamt
|
1.343
|
18
|
Niedersachsen
nsachsen_raw <- read_delim("https://www.apps.nlga.niedersachsen.de/corona/download.php?csv-file",
";", escape_double = FALSE, na = "NA",
trim_ws = TRUE)
nsachsen=nsachsen_raw[, c(3,4,5)]
ns_t=nsachsen; colnames(ns_t) <- c("County", "Cases", "Cases/100k")
kable(ns_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
County
|
Cases
|
Cases/100k
|
|
LK Ammerland
|
107
|
85.7
|
|
LK Aurich
|
66
|
34.7
|
|
LK Celle
|
102
|
57.0
|
|
LK Cloppenburg
|
43
|
25.0
|
|
LK Cuxhaven
|
61
|
30.7
|
|
LK Diepholz
|
195
|
89.7
|
|
LK Emsland
|
178
|
54.4
|
|
LK Friesland
|
18
|
18.2
|
|
LK Gifhorn
|
90
|
51.0
|
|
LK Goslar
|
74
|
54.2
|
|
LK Grafschaft Bentheim
|
123
|
89.7
|
|
LK Göttingen
|
239
|
72.9
|
|
LK Hameln-Pyrmont
|
82
|
55.1
|
|
LK Harburg
|
266
|
104.6
|
|
LK Heidekreis
|
38
|
27.1
|
|
LK Helmstedt
|
78
|
85.4
|
|
LK Hildesheim
|
188
|
68.1
|
|
LK Holzminden
|
76
|
107.5
|
|
LK Leer
|
53
|
31.0
|
|
LK Lüchow-Dannenberg
|
11
|
22.7
|
|
LK Lüneburg
|
119
|
64.7
|
|
LK Nienburg (Weser)
|
41
|
33.7
|
|
LK Northeim
|
48
|
36.2
|
|
LK Oldenburg
|
147
|
112.0
|
|
LK Osnabrück
|
440
|
122.8
|
|
LK Osterholz
|
57
|
50.0
|
|
LK Peine
|
106
|
78.8
|
|
LK Rotenburg (Wümme)
|
60
|
36.6
|
|
LK Schaumburg
|
71
|
45.0
|
|
LK Stade
|
138
|
67.5
|
|
LK Uelzen
|
28
|
30.3
|
|
LK Vechta
|
212
|
148.6
|
|
LK Verden
|
96
|
70.0
|
|
LK Wesermarsch
|
46
|
51.9
|
|
LK Wittmund
|
16
|
28.0
|
|
LK Wolfenbüttel
|
60
|
50.1
|
|
Region Hannover
|
1072
|
92.7
|
|
SK Braunschweig
|
215
|
86.4
|
|
SK Delmenhorst
|
23
|
29.6
|
|
SK Emden
|
10
|
20.0
|
|
SK Oldenburg
|
111
|
65.8
|
|
SK Osnabrück
|
268
|
163.0
|
|
SK Salzgitter
|
67
|
64.3
|
|
SK Wilhelmshaven
|
9
|
11.8
|
|
SK Wolfsburg
|
216
|
173.6
|
Schleswig-Holstein
webpage_sh <- read_html("https://www.schleswig-holstein.de/DE/Landesregierung/I/Presse/_documents/Corona-Liste_Kreise.html")
sh_raw <- html_nodes(webpage_sh, "table") # tell R to use tables
sh_raw <- webpage_sh %>% # tell R which table to use
html_nodes("table") %>%
. [1]%>% # use first table (there is only one)
html_table(fill=T)
sh_raw=sh_raw[[1]]
sh=sh_raw
sh_t=sh; colnames(sh_t) <- c("County", "Cases")
kable(sh_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
County
|
Cases
|
|
Dithmarschen
|
37.000
|
|
Flensburg
|
27.000
|
|
Herzogtum Lauenburg
|
147.000
|
|
Kiel
|
157.000
|
|
Lübeck
|
103.000
|
|
Neumünster
|
30.000
|
|
Nordfriesland
|
48.000
|
|
Ostholstein
|
51.000
|
|
Pinneberg
|
300.000
|
|
Plön
|
72.000
|
|
Rendsburg-Eckernförde
|
158.000
|
|
Schleswig-Flensburg
|
93.000
|
|
Segeberg
|
134.000
|
|
Steinburg
|
53.000
|
|
Stormarn
|
158.000
|
|
SUMME
|
1.568
|
Mecklenburg-Vorpommern
webpage_mv <- read_html("https://www.regierung-mv.de/Landesregierung/wm/Aktuell/?id=159065&processor=processor.sa.pressemitteilung")
mv_raw <- html_nodes(webpage_mv, "table") # tell R to use tables
mv_raw <- webpage_mv %>% # tell R which table to use
html_nodes("table") %>%
. [1]%>% # use first table (there is only one)
html_table(fill=T)
mv=mv_raw[[1]]
mv=mv[c(-1,-2),c(1,3)]
mv_t=mv
colnames(mv_t) <- c("County", "Cases")
kable(mv_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
|
County
|
Cases
|
|
3
|
Kreis/ kreisfreie Stadt
|
Stand 03.04. 16:30
|
|
4
|
Hansestadt Rostock
|
62
|
|
5
|
Landkreis Rostock
|
42
|
|
6
|
Mecklenburgische Seenplatte
|
90
|
|
7
|
Schwerin
|
75
|
|
8
|
Nordwestmecklenburg
|
51
|
|
9
|
Vorpommern-Rügen
|
58
|
|
10
|
Vorpommern-Greifswald
|
76
|
|
11
|
Ludwigslust-Parchim
|
47
|
|
12
|
Summe
|
501
|
per State
#### States ####
webpage_dtl <- read_html("https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html")
corona_raw <- html_nodes(webpage_dtl, "table") # tell R to use tables
corona_raw <- webpage_dtl %>% # tell R which table to use
html_nodes("table") %>%
. [1]%>% # use first table (there is only one)
html_table(fill=T)
corona_raw=corona_raw[[1]]
states=corona_raw[-1, c(1,2,4,5)]
states_t=states; colnames(states_t) <- c("State", "Cases", "Cases/100k", "Deaths")
# html table
kable(states_t) %>%
kable_styling() %>%
scroll_box(width = "500px", height = "600px")
|
|
State
|
Cases
|
Cases/100k
|
Deaths
|
|
2
|
Baden-Württemberg
|
17.014
|
154
|
316
|
|
3
|
Bayern
|
21.908
|
168
|
349
|
|
4
|
Berlin
|
3.471
|
93
|
22
|
|
5
|
Brandenburg
|
1.211
|
48
|
12
|
|
6
|
Bremen
|
354
|
52
|
6
|
|
7
|
Hamburg
|
2.697
|
146
|
16
|
|
8
|
Hessen
|
4.279
|
68
|
42
|
|
9
|
Mecklenburg- Vorpommern
|
501
|
31
|
5
|
|
10
|
Niedersachsen
|
5.571
|
70
|
85
|
|
11
|
Nordrhein-Westfalen
|
17.885
|
100
|
200
|
|
12
|
Rheinland-Pfalz
|
3.504
|
86
|
29
|
|
13
|
Saarland
|
1.265
|
128
|
14
|
|
14
|
Sachsen
|
2.591
|
64
|
24
|
|
15
|
Sachsen-Anhalt
|
896
|
41
|
11
|
|
16
|
Schleswig-Holstein
|
1.559
|
54
|
17
|
|
17
|
Thüringen
|
1.072
|
50
|
10
|
|
18
|
Gesamt
|
85.778
|
103
|
1.158
|