## 'data.frame': 94 obs. of 3 variables:
## $ Dep: Factor w/ 2 levels "D","N": 2 2 2 2 1 2 2 2 2 2 ...
## $ IQ : int 103 124 124 104 96 92 124 99 92 116 ...
## $ BP : int 4 12 9 3 3 3 6 4 3 9 ...
## Dep IQ BP
## 1 N 103 4
## 2 N 124 12
## 3 N 124 9
## 4 N 104 3
## 5 D 96 3
## 6 N 92 3
## [1] "data.frame"
## [1] 94 3
## [1] "Dep" "IQ" "BP"
## [1] TRUE
## Dep IQ BP
## 1 N 103 4
## [1] 103 124 124
## Dep IQ BP
## 16 N 89 11
## 58 N 117 11
## 66 N 126 11
## 2 N 124 12
## 73 D 99 13
## 12 D 22 17
## Dep IQ BP
## 77 N 124 1
## 80 N 121 1
## 24 N 106 0
## 75 N 122 0



#
plot(BP ~ IQ, data = dta, type = "n",
ylab = "Behavior problem score", xlab = "IQ")
text(dta$IQ, dta$BP, labels = dta$Dep, cex = 0.5)
abline(lm(BP ~ IQ, data = dta, subset = Dep == "D"))
abline(lm(BP ~ IQ, data = dta, subset = Dep == "N"), lty = 2)

##
## Welch Two Sample t-test
##
## data: IQ by Dep
## t = -1.6374, df = 15.53, p-value = 0.1216
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -26.926586 3.490299
## sample estimates:
## mean in group D mean in group N
## 101.0667 112.7848
##
## Call:
## lm(formula = BP ~ IQ, data = dta)
##
## Coefficients:
## (Intercept) IQ
## 13.18280 -0.06792