library(dplyr)
filter()
Data = iris
Data_mean = mean(Data$Sepal.Length)
Report = filter(.data = Data, Species == "versicolor", Sepal.Length > Data_mean)
head(Report)
arrange()
Data = iris
Report = arrange(.data = Data, desc(Sepal.Length), Sepal.Width)
head(Report)
select()
Select columns by name
data = iris
Report = select(data, Sepal.Length,Petal.Width)
head(Report)
Select all columns between Columns (inclusive)
data = iris
Report = select(data, -(Sepal.Length:Petal.Width))
head(Report)
Select all columns except
data = iris
Report = select(data, -(Sepal.Length:Petal.Width))
head(Report)
Select with Renaming Columns
data = iris
Report = select(data, Species = Species)
head(Report)
Helper Functions
- starts_with()
- ends_with()
- matches()
- contains()
data = iris
Report = select(data, starts_with("Petal"))
head(Report)
summarize()
Data = iris
Report = summarize(.data = Data, "Sepal Width Mean" = mean(Sepal.Width), "Sepal Length Mean" = mean(Sepal.Width))
head(Report)
mutate()
Data = iris
m = mean(Data$Sepal.Length)
s = sd(Data$Sepal.Length)
Report = mutate(.data= Data, Normalize = (Sepal.Length-m)/s)
head(Report)
NA
transmute()
Data = iris
m = mean(Data$Sepal.Length)
s = sd(Data$Sepal.Length)
Report = transmute(.data= Data, Normalize = (Sepal.Length-m)/s)
head(Report)
groupby()
Data = iris
Grouping = group_by(.data = Data,Species)
Summary = summarise(Grouping, count = n(),"Mean"= mean(Sepal.Length),"Standard Deviation"=sd(Sepal.Length) )
Summary
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCg0KYGBge3J9DQpsaWJyYXJ5KGRwbHlyKQ0KYGBgDQoNCiMjIyBmaWx0ZXIoKQ0KDQpgYGB7cn0NCkRhdGEgPSBpcmlzDQpEYXRhX21lYW4gPSBtZWFuKERhdGEkU2VwYWwuTGVuZ3RoKQ0KUmVwb3J0ID0gZmlsdGVyKC5kYXRhID0gRGF0YSwgU3BlY2llcyA9PSAidmVyc2ljb2xvciIsIFNlcGFsLkxlbmd0aCA+IERhdGFfbWVhbikNCmhlYWQoUmVwb3J0KQ0KYGBgDQoNCiMjIyBhcnJhbmdlKCkNCg0KYGBge3J9DQpEYXRhID0gaXJpcw0KUmVwb3J0ID0gYXJyYW5nZSguZGF0YSA9IERhdGEsIGRlc2MoU2VwYWwuTGVuZ3RoKSwgU2VwYWwuV2lkdGgpDQpoZWFkKFJlcG9ydCkNCmBgYA0KDQojIyMgc2VsZWN0KCkNCg0KKipTZWxlY3QgY29sdW1ucyBieSBuYW1lKioNCmBgYHtyfQ0KRGF0YSA9IGlyaXMNClJlcG9ydCA9IHNlbGVjdCguZGF0YSA9IERhdGEsIFNlcGFsLkxlbmd0aCxQZXRhbC5XaWR0aCkNCmhlYWQoUmVwb3J0KQ0KYGBgDQoNCioqU2VsZWN0IGFsbCBjb2x1bW5zIGJldHdlZW4gQ29sdW1ucyAoaW5jbHVzaXZlKSoqDQpgYGB7cn0NCkRhdGEgPSBpcmlzDQpSZXBvcnQgPSBzZWxlY3QoLmRhdGEgPSBEYXRhLCAtKFNlcGFsLkxlbmd0aDpQZXRhbC5XaWR0aCkpDQpoZWFkKFJlcG9ydCkNCmBgYA0KDQoqKlNlbGVjdCBhbGwgY29sdW1ucyBleGNlcHQqKg0KYGBge3J9DQpEYXRhID0gaXJpcw0KUmVwb3J0ID0gc2VsZWN0KC5kYXRhID0gRGF0YSwgLShTZXBhbC5MZW5ndGg6UGV0YWwuV2lkdGgpKQ0KaGVhZChSZXBvcnQpDQpgYGANCg0KKipTZWxlY3Qgd2l0aCBSZW5hbWluZyBDb2x1bW5zKioNCmBgYHtyfQ0KRGF0YSA9IGlyaXMNClJlcG9ydCA9IHNlbGVjdCguZGF0YSA9IERhdGEsIFNwZWNpZXMgPSBTcGVjaWVzKQ0KaGVhZChSZXBvcnQpDQpgYGANCg0KKipIZWxwZXIgRnVuY3Rpb25zKioNCg0KICAtIHN0YXJ0c193aXRoKCkNCgktIGVuZHNfd2l0aCgpDQoJLSBtYXRjaGVzKCkNCgktIGNvbnRhaW5zKCkNCgkNCmBgYHtyfQ0KRGF0YSA9IGlyaXMNClJlcG9ydCA9IHNlbGVjdCguZGF0YSA9IERhdGEsIHN0YXJ0c193aXRoKCJQZXRhbCIpKQ0KaGVhZChSZXBvcnQpDQpgYGANCg0KIyMjIHN1bW1hcml6ZSgpDQpgYGB7cn0NCkRhdGEgPSBpcmlzDQpSZXBvcnQgPSBzdW1tYXJpemUoLmRhdGEgPSBEYXRhLCAiU2VwYWwgV2lkdGggTWVhbiIgPSBtZWFuKFNlcGFsLldpZHRoKSwgIlNlcGFsIExlbmd0aCBNZWFuIiA9IG1lYW4oU2VwYWwuV2lkdGgpKQ0KaGVhZChSZXBvcnQpDQpgYGANCg0KIyMjIG11dGF0ZSgpDQpgYGB7cn0NCkRhdGEgPSBpcmlzDQptID0gbWVhbihEYXRhJFNlcGFsLkxlbmd0aCkNCnMgPSBzZChEYXRhJFNlcGFsLkxlbmd0aCkNClJlcG9ydCA9IG11dGF0ZSguZGF0YT0gRGF0YSwgTm9ybWFsaXplID0gKFNlcGFsLkxlbmd0aC1tKS9zKQ0KaGVhZChSZXBvcnQpDQpgYGANCg0KIyMjIHRyYW5zbXV0ZSgpDQpgYGB7cn0NCkRhdGEgPSBpcmlzDQptID0gbWVhbihEYXRhJFNlcGFsLkxlbmd0aCkNCnMgPSBzZChEYXRhJFNlcGFsLkxlbmd0aCkNClJlcG9ydCA9IHRyYW5zbXV0ZSguZGF0YT0gRGF0YSwgTm9ybWFsaXplID0gKFNlcGFsLkxlbmd0aC1tKS9zKQ0KaGVhZChSZXBvcnQpDQpgYGANCg0KIyMjIGdyb3VwYnkoKQ0KDQpgYGB7cn0NCkRhdGEgPSBpcmlzDQpHcm91cGluZyA9IGdyb3VwX2J5KC5kYXRhID0gRGF0YSxTcGVjaWVzKQ0KU3VtbWFyeSA9IHN1bW1hcmlzZShHcm91cGluZywgY291bnQgPSBuKCksIk1lYW4iPSBtZWFuKFNlcGFsLkxlbmd0aCksIlN0YW5kYXJkIERldmlhdGlvbiI9c2QoU2VwYWwuTGVuZ3RoKSApDQpTdW1tYXJ5DQpgYGANCg0KDQoNCg0K