Checked the skewness and kurtosis of the chosen items, everything is good to proceed.
Outliers can severely distort LPA results, so even though the data had already been screened for outliers I checked for them again using the LPA variables. Cutoff of 2 was used, per recommendations from the literature (Tabachnik).
##
## No Yes
## 2312 27
Observing the correlations between the LPA items.
Plot suggests that there are two clusters, the positive and negative variables. This grouping was used in the LPA analysis when running all 10 items together failed to converge.
Barplots of the positive variables, grouped by their latent profile assignment.
Barplots of the negative variables, grouped by their latent profile assignment.
##
## 1 2 3 4 5
## 425 560 304 356 694
First table is by positive class, second is by negative class.
## Contrasts set to contr.sum for the following variables: pos_class
## Anova Table (Type 3 tests)
##
## Response: belong_c
## Effect df MSE F ges p.value
## 1 pos_class 4, 2307 0.75 161.84 *** .22 <.0001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
## pos_class emmean SE df lower.CL upper.CL
## 1 -0.9868 0.0531 2307 -1.0910 -0.8826
## 2 0.7336 0.0544 2307 0.6270 0.8402
## 3 0.0579 0.0421 2307 -0.0246 0.1403
## 4 -0.1434 0.0301 2307 -0.2025 -0.0842
## 5 0.3677 0.0375 2307 0.2941 0.4413
##
## Confidence level used: 0.95
## contrast estimate SE df t.ratio p.value
## 1 - 2 -1.720 0.0760 2307 -22.636 <.0001
## 1 - 3 -1.045 0.0678 2307 -15.419 <.0001
## 1 - 4 -0.843 0.0611 2307 -13.809 <.0001
## 1 - 5 -1.355 0.0650 2307 -20.826 <.0001
## 2 - 3 0.676 0.0687 2307 9.832 <.0001
## 2 - 4 0.877 0.0622 2307 14.108 <.0001
## 2 - 5 0.366 0.0661 2307 5.539 <.0001
## 3 - 4 0.201 0.0517 2307 3.888 0.0010
## 3 - 5 -0.310 0.0564 2307 -5.498 <.0001
## 4 - 5 -0.511 0.0481 2307 -10.617 <.0001
##
## P value adjustment: tukey method for comparing a family of 5 estimates
## Contrasts set to contr.sum for the following variables: neg_class
## Anova Table (Type 3 tests)
##
## Response: belong_c
## Effect df MSE F ges p.value
## 1 neg_class 4, 2307 0.92 28.26 *** .05 <.0001
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
## neg_class emmean SE df lower.CL upper.CL
## 1 -0.159 0.0469 2307 -0.251 -0.0672
## 2 0.193 0.0409 2307 0.113 0.2730
## 3 -0.268 0.0556 2307 -0.377 -0.1591
## 4 0.364 0.0513 2307 0.264 0.4646
## 5 -0.088 0.0364 2307 -0.159 -0.0166
##
## Confidence level used: 0.95
## contrast estimate SE df t.ratio p.value
## 1 - 2 -0.3520 0.0622 2307 -5.662 <.0001
## 1 - 3 0.1090 0.0727 2307 1.499 0.5630
## 1 - 4 -0.5232 0.0694 2307 -7.533 <.0001
## 1 - 5 -0.0711 0.0593 2307 -1.199 0.7521
## 2 - 3 0.4610 0.0690 2307 6.684 <.0001
## 2 - 4 -0.1712 0.0656 2307 -2.611 0.0686
## 2 - 5 0.2809 0.0547 2307 5.132 <.0001
## 3 - 4 -0.6321 0.0756 2307 -8.362 <.0001
## 3 - 5 -0.1801 0.0664 2307 -2.711 0.0526
## 4 - 5 0.4520 0.0629 2307 7.190 <.0001
##
## P value adjustment: tukey method for comparing a family of 5 estimates
##
## Call:
## lm(formula = belong_c ~ meaningpurpose + gratitude + motExpeng +
## mindfulness + stressSupp, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7799 -0.3919 0.1068 0.4699 2.4626
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.002077 0.015474 0.134 0.89322
## meaningpurpose 0.166938 0.017588 9.492 < 2e-16 ***
## gratitude 0.217984 0.017883 12.190 < 2e-16 ***
## motExpeng 0.455815 0.017549 25.974 < 2e-16 ***
## mindfulness 0.046652 0.016428 2.840 0.00455 **
## stressSupp -0.069976 0.016102 -4.346 1.45e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7439 on 2306 degrees of freedom
## Multiple R-squared: 0.4268, Adjusted R-squared: 0.4255
## F-statistic: 343.4 on 5 and 2306 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = belong_c ~ TestAnx + stressChanges + stressConflict +
## stressFrust + stressReac, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.8378 -0.5543 0.1156 0.7031 1.8166
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.009771 0.019802 0.493 0.6218
## TestAnx -0.126701 0.023313 -5.435 6.07e-08 ***
## stressChanges -0.107966 0.023845 -4.528 6.26e-06 ***
## stressConflict 0.097379 0.022100 4.406 1.10e-05 ***
## stressFrust -0.057793 0.024135 -2.395 0.0167 *
## stressReac -0.050771 0.024406 -2.080 0.0376 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.952 on 2306 degrees of freedom
## Multiple R-squared: 0.06105, Adjusted R-squared: 0.05901
## F-statistic: 29.99 on 5 and 2306 DF, p-value: < 2.2e-16
##
## Call:
## lm(formula = belong_c ~ meaningpurpose + gratitude + motExpeng +
## mindfulness + stressSupp + TestAnx + stressChanges + stressConflict +
## stressFrust + stressReac, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6845 -0.3913 0.0968 0.4710 2.4875
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.001234 0.015411 0.080 0.936193
## meaningpurpose 0.156291 0.017813 8.774 < 2e-16 ***
## gratitude 0.225831 0.018125 12.460 < 2e-16 ***
## motExpeng 0.441472 0.018000 24.526 < 2e-16 ***
## mindfulness 0.025820 0.017485 1.477 0.139889
## stressSupp -0.058854 0.016487 -3.570 0.000365 ***
## TestAnx -0.020677 0.018707 -1.105 0.269138
## stressChanges -0.048523 0.018868 -2.572 0.010183 *
## stressConflict 0.051120 0.017268 2.960 0.003104 **
## stressFrust -0.006826 0.018903 -0.361 0.718058
## stressReac -0.034596 0.019586 -1.766 0.077459 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7407 on 2301 degrees of freedom
## Multiple R-squared: 0.4328, Adjusted R-squared: 0.4304
## F-statistic: 175.6 on 10 and 2301 DF, p-value: < 2.2e-16
## Analysis of Variance Table
##
## Model 1: belong_c ~ meaningpurpose + gratitude + motExpeng + mindfulness +
## stressSupp
## Model 2: belong_c ~ meaningpurpose + gratitude + motExpeng + mindfulness +
## stressSupp + TestAnx + stressChanges + stressConflict + stressFrust +
## stressReac
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2306 1276.0
## 2 2301 1262.5 5 13.467 4.9088 0.0001795 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1