Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

library(readxl)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
#Assignment 

Assignment_data <- read_excel("C:\\Users\\CcHUB_1\\Downloads\\R Training\\Basic Research and Analysis Training March Session 1 followup.xlsx")
#Mean, Median, Mode, Variance and SD for Teachers Using App Month 1
Mean_Month_1 <- mean(Assignment_data$`Teachers Using App Month 1`, na.rm = TRUE)
Mean_Month_1
## [1] 400.122
Median_Month_1 <- median(Assignment_data$`Teachers Using App Month 1`, na.rm = TRUE)
Median_Month_1
## [1] 230
getmode <- function(v) {
   uniqv <- unique(v)
   uniqv[which.max(tabulate(match(v, uniqv)))]
}
Mode_Month_1 <- getmode(Assignment_data$`Teachers Using App Month 1`)
Mode_Month_1
## [1] 200
Variance_Month_1 <- var(Assignment_data$`Teachers Using App Month 1`, na.rm = TRUE)
Variance_Month_1
## [1] 561861.9
SD_Month_1 <- sd(Assignment_data$`Teachers Using App Month 1`, na.rm = TRUE)
SD_Month_1
## [1] 749.5745
#Mean, Median, Mode, Variance and SD for Teachers Using App Month 2
Mean_Month_2 <- mean(Assignment_data$`Teachers Using App Month 2`, na.rm = TRUE)
Mean_Month_2
## [1] 263.5366
Median_Month_2 <- median(Assignment_data$`Teachers Using App Month 2`, na.rm = TRUE)
Median_Month_2 
## [1] 200
Mode_Month_2 <- getmode(Assignment_data$`Teachers Using App Month 2`)
Mode_Month_2
## [1] 200
Variance_Month_2 <- var(Assignment_data$`Teachers Using App Month 2`, na.rm = TRUE)
Variance_Month_2
## [1] 90576.55
SD_Month_2 <- sd(Assignment_data$`Teachers Using App Month 2`, na.rm = TRUE)
SD_Month_2 
## [1] 300.9594
#Mean, Median, Mode, Variance and SD for Teachers Using App Month 3
Mean_Month_3 <- mean(Assignment_data$`Teachers Using App Month 3`, na.rm = TRUE)
Mean_Month_3
## [1] 159.3902
Median_Month_3 <- median(Assignment_data$`Teachers Using App Month 3`, na.rm = TRUE)
Median_Month_3 
## [1] 200
Mode_Month_3 <- getmode(Assignment_data$`Teachers Using App Month 3`)
Mode_Month_3
## [1] 215
Variance_Month_3 <- var(Assignment_data$`Teachers Using App Month 3`, na.rm = TRUE)
Variance_Month_3
## [1] 10285.24
SD_Month_3 <- sd(Assignment_data$`Teachers Using App Month 3`, na.rm = TRUE)
SD_Month_3
## [1] 101.4162
#Mean, Median, Mode, Variance and SD for Age
Mean_Age <- mean(Assignment_data$Age, na.rm = TRUE)
Mean_Age
## [1] 34.5
Median_Age <- median(Assignment_data$Age, na.rm = TRUE)
Median_Age
## [1] 31
Mode_Age <- getmode(Assignment_data$Age)
Mode_Age
## [1] 25
Variance_Age <- var(Assignment_data$Age, na.rm = TRUE)
Variance_Age 
## [1] 149.8659
SD_Age <- sd(Assignment_data$Age, na.rm = TRUE)
SD_Age
## [1] 12.24197