rm(list = ls())
set.seed(1987)
x <- runif(10,2,5) # generamos 10 numeros aleatorios uniformes entre [2,5]
y <- rnorm(10,15,3) # generamos 10 numeros aleatorios normales de media 15 y desviacion estandar de 3
lista <- list(a=x, b=y, c=data.frame(x,y))
lista$a
## [1] 2.296293 4.415145 3.822722 3.148497 4.993411 4.977279 3.148723
## [8] 2.698193 3.789526 3.037013
lista[[1]]
## [1] 2.296293 4.415145 3.822722 3.148497 4.993411 4.977279 3.148723
## [8] 2.698193 3.789526 3.037013
lista$c
## x y
## 1 2.296293 15.805805
## 2 4.415145 16.733891
## 3 3.822722 13.400677
## 4 3.148497 11.728232
## 5 4.993411 17.723527
## 6 4.977279 13.470132
## 7 3.148723 15.317252
## 8 2.698193 14.981638
## 9 3.789526 9.847181
## 10 3.037013 16.344272
lista[[3]]
## x y
## 1 2.296293 15.805805
## 2 4.415145 16.733891
## 3 3.822722 13.400677
## 4 3.148497 11.728232
## 5 4.993411 17.723527
## 6 4.977279 13.470132
## 7 3.148723 15.317252
## 8 2.698193 14.981638
## 9 3.789526 9.847181
## 10 3.037013 16.344272
lista$b[5]
## [1] 17.72353
lista[[2]][5]
## [1] 17.72353
rm(list = ls())
set.seed(1987)
lista2 <- list()
n <- 10
for (i in 1:n) {
lista2[[i]] <- runif(i,2,5)
}
lista2
## [[1]]
## [1] 2.296293
##
## [[2]]
## [1] 4.415145 3.822722
##
## [[3]]
## [1] 3.148497 4.993411 4.977279
##
## [[4]]
## [1] 3.148723 2.698193 3.789526 3.037013
##
## [[5]]
## [1] 3.817646 4.231153 4.155067 2.534407 2.890938
##
## [[6]]
## [1] 3.402144 2.413180 3.968950 4.454058 3.139918 2.915123
##
## [[7]]
## [1] 2.039117 3.626330 3.654594 3.492675 2.877256 2.128803 2.642409
##
## [[8]]
## [1] 4.018868 3.799652 4.149620 2.597014 3.327200 3.308157 3.210291 2.984963
##
## [[9]]
## [1] 3.077262 4.360543 2.846235 4.842422 4.064210 4.110764 3.063852 3.447566
## [9] 3.202773
##
## [[10]]
## [1] 2.459022 2.713820 3.551228 4.560394 3.419739 3.831390 3.093279
## [8] 3.314575 2.787503 2.172409
grafico <- plot(lista2[[5]],type="l", xlab = "Indice", main = "Grafica de lineas para lista2[[5]]")
rm(list = ls())
set.seed(1987)
lista3 <- list()
n <- 3
for (i in 1:n) {
lista3[[i]] <- rexp(30,1/20) # generamos 30 numeros aleatorios exponenciales de media 20
}
tabla <- cbind(lista3[[1]],lista3[[2]],lista3[[3]])
colnames(tabla) <- c("Muestra 1", "Muestra 2", "Muestra 3")
tabla
## Muestra 1 Muestra 2 Muestra 3
## [1,] 53.193372 34.894084 6.176062
## [2,] 12.201937 18.914964 22.145878
## [3,] 4.302958 14.659640 25.875426
## [4,] 24.489520 18.785074 1.550824
## [5,] 3.226338 35.667693 32.959839
## [6,] 21.516620 38.943268 36.278296
## [7,] 4.235277 81.176181 51.765479
## [8,] 9.748707 36.647024 42.419545
## [9,] 8.734226 10.165013 22.714500
## [10,] 36.227601 26.781216 18.988088
## [11,] 17.621303 102.390086 38.409504
## [12,] 15.772243 3.672293 11.839004
## [13,] 12.720770 7.844598 1.315505
## [14,] 24.260759 14.180151 8.032410
## [15,] 18.266236 23.691437 53.055269
## [16,] 96.557799 15.005700 79.463258
## [17,] 1.684395 4.839278 50.143297
## [18,] 2.061259 1.048305 14.537373
## [19,] 14.458138 28.408240 28.277488
## [20,] 3.995358 1.490276 23.116146
## [21,] 8.661605 3.439813 26.810988
## [22,] 39.566628 1.818631 31.185414
## [23,] 19.455675 20.098685 9.362187
## [24,] 20.128633 5.004756 39.039363
## [25,] 22.589930 8.789469 15.567196
## [26,] 11.473905 51.027170 19.236921
## [27,] 16.429200 3.779442 14.455678
## [28,] 9.538674 10.335267 19.498355
## [29,] 22.232338 11.898324 3.420507
## [30,] 15.984076 9.864298 7.950115
rm(list = ls())
set.seed(1987)
n <- 10
a <- rnorm(n,15,0.5)
b <- rnorm(n,20,1.0)
c <- rnorm(n,18,0.2)
d <- rnorm(n,16,0.4)
rm(list = ls())
set.seed(1987)
m <- 8
a <- list()
b <- list()
c <- list()
d <- list()
tabla <- list()
for (j in 1:m) {
n <- 10
a[[j]] <- rnorm(n,15,0.5)
b[[j]] <- rnorm(n,20,1.0)
c[[j]] <- rnorm(n,18,0.2)
d[[j]] <- rnorm(n,16,0.4)
tabla[[j]] <- cbind(a[[j]],b[[j]],c[[j]],d[[j]])
colnames(tabla[[j]]) <- c(paste("Maq. 1, dia ",j),paste("Maq. 2, dia ",j),paste("Maq. 3, dia ",j),paste("Maq. 4, dia ",j))
}
Observa el uso del comando paste: este nos permitió anidar cadenas de caracteres con variables. Esta es una forma de colocar etiquetas que dependen de una variable, ya que R no permite colocar dentro de caracteres el valor de una variable (haz la prueba poniendo solamente “Maq. 1 dia, j” en vez de paste(“Maq. 1, dia”,j) y notarás que j será interpretado como caracter y no como variable).
Podemos ver la simulación cada día, simplemente digitando tabla[[\(j\)]], para \(j=1,2,\ldots,8\). Por ejemplo, en el día 5:tabla[[5]]
## Maq. 1, dia 5 Maq. 2, dia 5 Maq. 3, dia 5 Maq. 4, dia 5
## [1,] 15.00510 21.75612 17.90567 15.59845
## [2,] 15.37919 18.97733 18.16021 16.36036
## [3,] 13.70603 20.19553 17.64590 16.25645
## [4,] 15.33667 18.75061 17.97345 16.45142
## [5,] 14.65144 21.49800 17.75967 16.50262
## [6,] 15.36272 21.33335 17.81438 15.84524
## [7,] 14.08599 21.64395 18.24877 15.31314
## [8,] 14.73563 20.28528 18.08100 16.17010
## [9,] 15.39589 20.31548 17.77871 15.99445
## [10,] 14.77885 20.32828 17.56007 15.88612
tabla
## [[1]]
## Maq. 1, dia 1 Maq. 2, dia 1 Maq. 3, dia 1 Maq. 4, dia 1
## [1,] 14.35569 19.49004 18.09808 16.27501
## [2,] 15.13650 20.10575 17.92542 14.96831
## [3,] 16.42425 19.99388 17.94981 16.20530
## [4,] 14.85107 18.28239 17.85741 15.95882
## [5,] 15.12216 20.44809 18.21028 17.17059
## [6,] 15.13430 20.57259 18.05611 15.44444
## [7,] 15.28898 19.85511 17.96889 16.12322
## [8,] 14.73345 19.75552 17.68472 15.68761
## [9,] 14.45471 19.63910 17.81280 15.71336
## [10,] 15.45392 19.42332 17.60764 15.93930
##
## [[2]]
## Maq. 1, dia 2 Maq. 2, dia 2 Maq. 3, dia 2 Maq. 4, dia 2
## [1,] 14.38004 20.39723 18.53905 15.80975
## [2,] 15.10863 19.74706 17.73776 15.97199
## [3,] 14.43960 19.20327 18.10535 15.90539
## [4,] 15.71049 19.22007 17.60293 16.15929
## [5,] 15.15948 21.78649 18.13817 15.72608
## [6,] 15.92498 18.68528 17.97112 16.27129
## [7,] 14.33571 20.49113 17.66838 15.41897
## [8,] 14.69756 19.82133 17.93133 15.58575
## [9,] 15.25179 19.51564 17.78979 15.36305
## [10,] 15.41629 21.04485 17.82859 15.61587
##
## [[3]]
## Maq. 1, dia 3 Maq. 2, dia 3 Maq. 3, dia 3 Maq. 4, dia 3
## [1,] 14.69988 19.57458 17.94417 15.95587
## [2,] 15.46071 19.51648 17.93458 16.97685
## [3,] 14.83613 20.23018 17.76370 15.87860
## [4,] 14.61664 21.01390 17.67250 16.30733
## [5,] 15.47009 21.76702 17.89524 16.42241
## [6,] 14.96974 20.30727 18.21899 15.71762
## [7,] 14.67510 17.62636 18.36634 15.98530
## [8,] 14.94121 18.75837 17.97895 16.41895
## [9,] 14.44750 19.81588 17.78406 16.57836
## [10,] 14.31230 18.00463 17.75975 16.48069
##
## [[4]]
## Maq. 1, dia 4 Maq. 2, dia 4 Maq. 3, dia 4 Maq. 4, dia 4
## [1,] 15.17988 20.86055 18.13376 15.93639
## [2,] 14.76790 20.08499 17.95671 16.53112
## [3,] 15.69119 20.31903 18.03769 16.02792
## [4,] 14.69923 18.13400 18.18059 15.91442
## [5,] 15.08011 19.97182 18.03099 16.13660
## [6,] 15.46311 20.36912 18.12745 16.59744
## [7,] 15.25698 19.41064 18.28307 16.40112
## [8,] 16.01550 19.74118 18.10112 15.83623
## [9,] 14.57551 21.13083 18.41864 15.66788
## [10,] 15.21222 19.99602 18.09078 15.89525
##
## [[5]]
## Maq. 1, dia 5 Maq. 2, dia 5 Maq. 3, dia 5 Maq. 4, dia 5
## [1,] 15.00510 21.75612 17.90567 15.59845
## [2,] 15.37919 18.97733 18.16021 16.36036
## [3,] 13.70603 20.19553 17.64590 16.25645
## [4,] 15.33667 18.75061 17.97345 16.45142
## [5,] 14.65144 21.49800 17.75967 16.50262
## [6,] 15.36272 21.33335 17.81438 15.84524
## [7,] 14.08599 21.64395 18.24877 15.31314
## [8,] 14.73563 20.28528 18.08100 16.17010
## [9,] 15.39589 20.31548 17.77871 15.99445
## [10,] 14.77885 20.32828 17.56007 15.88612
##
## [[6]]
## Maq. 1, dia 6 Maq. 2, dia 6 Maq. 3, dia 6 Maq. 4, dia 6
## [1,] 14.86953 18.58554 18.04295 15.66461
## [2,] 14.88291 18.85424 17.82996 16.13783
## [3,] 14.54236 21.85812 18.17893 16.14771
## [4,] 15.42556 17.69666 18.35923 16.39300
## [5,] 15.61763 18.87413 18.00232 15.13348
## [6,] 15.58795 19.33928 17.98994 17.04652
## [7,] 14.93815 22.27116 18.07616 16.18813
## [8,] 15.26271 20.61034 17.91964 15.26651
## [9,] 15.26625 21.27245 18.03933 16.35979
## [10,] 15.25351 20.23518 18.11216 15.84316
##
## [[7]]
## Maq. 1, dia 7 Maq. 2, dia 7 Maq. 3, dia 7 Maq. 4, dia 7
## [1,] 15.32320 20.86366 18.43094 16.31283
## [2,] 14.74150 20.83992 17.98874 15.65829
## [3,] 15.13318 19.64216 18.04576 14.97843
## [4,] 14.47474 20.71775 17.97945 15.74906
## [5,] 14.01300 20.69205 17.95319 16.19401
## [6,] 14.71684 21.50927 18.34549 16.59158
## [7,] 14.86314 18.84038 17.78060 15.97705
## [8,] 14.27888 21.36656 17.85231 15.65324
## [9,] 15.20179 19.73684 17.59597 15.26697
## [10,] 15.80079 19.10953 17.99671 16.22499
##
## [[8]]
## Maq. 1, dia 8 Maq. 2, dia 8 Maq. 3, dia 8 Maq. 4, dia 8
## [1,] 15.23918 19.98281 18.17445 16.33183
## [2,] 14.83401 19.91528 18.05859 16.10402
## [3,] 15.54157 20.25495 18.36197 15.94725
## [4,] 15.43327 20.53473 18.10222 15.62682
## [5,] 16.09043 20.58800 17.50008 15.79430
## [6,] 15.86437 21.59014 18.10506 16.37244
## [7,] 14.88598 19.04445 17.68939 15.59848
## [8,] 14.22673 20.57485 18.04921 16.42202
## [9,] 15.98448 18.76661 18.33864 16.01602
## [10,] 14.75807 18.93378 17.83554 16.45581