knitr::opts_chunk$set(echo = TRUE)
Today is:
today <- Sys.Date() format(today, format="%B %d %Y")
## [1] "marzo 17 2020"
17/3/2020
knitr::opts_chunk$set(echo = TRUE)
Today is:
today <- Sys.Date() format(today, format="%B %d %Y")
## [1] "marzo 17 2020"
Loading the libraries
suppressPackageStartupMessages(library(dplyr)) library(leaflet)
Loading the dataset (Taken from https://simplemaps.com/data/pe-cities)
df.original <- read.csv(file = 'pe.csv') df <- df.original %>% select( city, admin, lat, lng, population)
Exploring the dataset
str(df)
'data.frame': 89 obs. of 5 variables: $ city : Factor w/ 88 levels "Abancay","Andoas",..: 49 9 3 86 16 42 35 61 25 18 ... $ admin : Factor w/ 25 levels "Amazonas","Ancash",..: 15 7 4 13 14 16 12 20 8 2 ... $ lat : num -12.05 -12.06 -16.4 -8.11 -6.73 ... $ lng : num -77 -77.1 -71.5 -79 -79.8 ... $ population: int 8012000 876877 815000 765171 596792 458729 412733 396932 361182 349846 ...
#summary(df) head(df)
city admin lat lng population 1 Lima Lima -12.050000 -77.05000 8012000 2 Callao Callao -12.056585 -77.11814 876877 3 Arequipa Arequipa -16.398889 -71.53500 815000 4 Trujillo La Libertad -8.111944 -79.02556 765171 5 Chilape Lambayeque -6.729548 -79.83530 596792 6 Iquitos Loreto -3.749125 -73.25383 458729
These are the map configurations
my_map <- addTiles(leaflet(df))
my_map <- df %>%
leaflet() %>%
addProviderTiles(providers$OpenStreetMap) %>%
addTiles() %>%
addCircles( weight=1,radius = sqrt(df$population)*2,
lng=df$lng,lat=df$lat,fillOpacity = 0.8) %>%
addCircleMarkers( clusterOptions = markerClusterOptions(),
lng=df$lng,lat=df$lat, color = 'red',
popup = paste('City:',df$city, '<br>',
'Province:',df$admin, '<br>',
'Population:',df$population, '<br>',
'lat:', df$lat, '<br>',
'lng', df$lng)
)
Now, it’s time to see the map
my_map