—————————————– Analysis:

cor(df$Abs, df$MathGrade, method = "pearson")
## [1] -0.08999937
cor.test(df$Abs, df$MathGrade)
## 
##  Pearson's product-moment correlation
## 
## data:  df$Abs and df$MathGrade
## t = -3.4315, df = 1442, p-value = 0.0006171
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.14093090 -0.03859271
## sample estimates:
##         cor 
## -0.08999937

Absence:

regAbs = lm(MathGrade ~ Abs, data = df)
summary(regAbs)
## 
## Call:
## lm(formula = MathGrade ~ Abs, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.528 -12.306   3.082  16.467  33.802 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 60.75040    0.80189  75.759  < 2e-16 ***
## Abs         -0.11099    0.03234  -3.432 0.000617 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.13 on 1442 degrees of freedom
## Multiple R-squared:  0.0081, Adjusted R-squared:  0.007412 
## F-statistic: 11.78 on 1 and 1442 DF,  p-value: 0.0006171

Years of exp:

regYofExp= lm(MathGrade ~ YofExp, data = df); table(df$YofExp)
## 
##   2   3   4 
## 318 524 602
summary(regYofExp)
## 
## Call:
## lm(formula = MathGrade ~ YofExp, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -62.643 -11.664   3.316  15.357  37.316 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  74.6032     2.2193   33.62  < 2e-16 ***
## YofExp       -4.9799     0.6748   -7.38 2.66e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 19.84 on 1442 degrees of freedom
## Multiple R-squared:  0.03639,    Adjusted R-squared:  0.03573 
## F-statistic: 54.46 on 1 and 1442 DF,  p-value: 2.664e-13

Sex:

t.test(MathGrade ~ Sex, df, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  MathGrade by Sex
## t = 15.936, df = 1442, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  15.62751 20.01490
## sample estimates:
## mean in group Female   mean in group Male 
##             71.87733             54.05613
regSex= lm(MathGrade ~ as.factor(Sex), data = df)
summary(regSex)
## 
## Call:
## lm(formula = MathGrade ~ as.factor(Sex), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -69.877 -10.056   3.944  12.123  37.944 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         71.8773     0.9622   74.70   <2e-16 ***
## as.factor(Sex)Male -17.8212     1.1183  -15.94   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.63 on 1442 degrees of freedom
## Multiple R-squared:  0.1497, Adjusted R-squared:  0.1491 
## F-statistic: 253.9 on 1 and 1442 DF,  p-value: < 2.2e-16

Qualification:

t.test(MathGrade ~ Qual, df, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  MathGrade by Qual
## t = -5.2625, df = 1442, p-value = 1.635e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.489852 -3.879262
## sample estimates:
##    mean in group Doc mean in group Master 
##             54.22139             60.40595
regQual= lm(MathGrade ~ as.factor(Qual), data = df)
summary(regQual)
## 
## Call:
## lm(formula = MathGrade ~ as.factor(Qual), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.406 -11.406   3.594  15.779  37.779 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            54.2214     0.9983  54.313  < 2e-16 ***
## as.factor(Qual)Master   6.1846     1.1752   5.263 1.64e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.02 on 1442 degrees of freedom
## Multiple R-squared:  0.01884,    Adjusted R-squared:  0.01816 
## F-statistic: 27.69 on 1 and 1442 DF,  p-value: 1.635e-07

class time:

t.test(MathGrade ~ ClassTime, df, var.equal=TRUE)
## 
##  Two Sample t-test
## 
## data:  MathGrade by ClassTime
## t = -1.8937, df = 1442, p-value = 0.05847
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.14536402  0.07302844
## sample estimates:
## mean in group Evening mean in group Morning 
##              57.50820              59.54436
regClass= lm(MathGrade ~ as.factor(ClassTime), data = df)
summary(regClass)
## 
## Call:
## lm(formula = MathGrade ~ as.factor(ClassTime), data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.544 -12.508   3.456  16.456  34.492 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  57.5082     0.8172  70.376   <2e-16 ***
## as.factor(ClassTime)Morning   2.0362     1.0752   1.894   0.0585 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 20.18 on 1442 degrees of freedom
## Multiple R-squared:  0.002481,   Adjusted R-squared:  0.001789 
## F-statistic: 3.586 on 1 and 1442 DF,  p-value: 0.05847

all variables:

regAll = lm(MathGrade ~ Abs + YofExp + as.factor(Qual) + as.factor(Sex), data = df)
summary(regAll)
## 
## Call:
## lm(formula = MathGrade ~ Abs + YofExp + as.factor(Qual) + as.factor(Sex), 
##     data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -71.814  -9.408   4.042  12.206  39.123 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            76.71558    2.54962  30.089  < 2e-16 ***
## Abs                    -0.07929    0.02994  -2.648  0.00819 ** 
## YofExp                 -1.13162    0.69456  -1.629  0.10348    
## as.factor(Qual)Master  -0.47972    1.18166  -0.406  0.68483    
## as.factor(Sex)Male    -17.00885    1.27924 -13.296  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.59 on 1439 degrees of freedom
## Multiple R-squared:  0.1555, Adjusted R-squared:  0.1532 
## F-statistic: 66.25 on 4 and 1439 DF,  p-value: < 2.2e-16