input data
read in a plain text file with variable names and assign a name to it
checking data
structure of data
first 6 rows
head(dta)
#> math2 math1 cc
#> 1 28 18 328.20
#> 2 56 22 406.03
#> 3 51 44 386.94
#> 4 13 8 166.91
#> 5 39 20 328.20
#> 6 41 12 328.20descriptive statistics
variable mean
correlation matrix
cor(dta)
#> math2 math1 cc
#> math2 1.0000000 0.7443604 0.6570098
#> math1 0.7443604 1.0000000 0.5956771
#> cc 0.6570098 0.5956771 1.0000000plot data
specify square plot region
scatter plot of math2 by math1
plot(math2 ~ math1, data=dta, xlim=c(0, 60), ylim=c(0, 60),
xlab="Math score at Year 1", ylab="Math score at Year 2")
# add grid lines
grid()
## regression analysis
# regress math2 by math1
dta.lm <- lm(math2 ~ math1, data=dta)
# add regression line
abline(dta.lm, lty=2)
# add plot title
title("Mathematics Attainment")regression analysis
regress math2 by math1
# show results
summary(dta.lm)
#>
#> Call:
#> lm(formula = math2 ~ math1, data = dta)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -10.430 -5.521 -0.369 4.253 20.388
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 12.944 2.607 4.965 1.57e-05 ***
#> math1 1.030 0.152 6.780 5.57e-08 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 7.255 on 37 degrees of freedom
#> Multiple R-squared: 0.5541, Adjusted R-squared: 0.542
#> F-statistic: 45.97 on 1 and 37 DF, p-value: 5.571e-08
# show anova table
anova(dta.lm)
#> Analysis of Variance Table
#>
#> Response: math2
#> Df Sum Sq Mean Sq F value Pr(>F)
#> math1 1 2419.6 2419.59 45.973 5.571e-08 ***
#> Residuals 37 1947.3 52.63
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1diagnostics
specify maximum plot region
#
plot(scale(resid(dta.lm)) ~ fitted(dta.lm),
ylim=c(-3.5, 3.5), type="n",
xlab="Fitted values", ylab="Standardized residuals")
#
text(fitted(dta.lm), scale(resid(dta.lm)), labels=rownames(dta), cex=0.5)
#
grid()
# add a horizontal red dash line
abline(h=0, lty=2, col="red")