\[For 1≤j≤k, m(j)= \frac{(k-j+1)^n-(k-j)^n}{k^n}\]
*** Probability:*** \[P(X=x) = (1-p)^{n-1}*p\]
p_8yrs = ((.9)^(7))*0.1
p_8yrs
## [1] 0.04782969
*** Expected Value:*** \[E[X] = \frac{1}{p}\]
EV = 1/0.1
EV
## [1] 10
*** Standard Deviation:*** \[sd = \sqrt\frac{1-p}{p^2}\]
sd = sqrt((1-0.1)/(0.1^2))
sd
## [1] 9.486833
*** Probability:*** \[P(X>=8yrs) = e^\frac{-k}{u}\]
p_8yrs = exp(-8/10)
p_8yrs
## [1] 0.449329
*** Expected Value:***
\[E[X] = u = \frac{1}{\lambda} = 10, where, \lambda = \frac{1}{10}\]
EV = 1/0.1
EV
## [1] 10
*** Standard Deviation:*** \[sd = \sqrt\frac{1}{\lambda^2}\]
sd = sqrt(1/(0.1^2))
sd
## [1] 10
*** Probability *** \[P(X>8) = 1-p^x(1-p)^{n-x}\]
prob = 0.1^0*0.9^8
prob
## [1] 0.4304672
*** Expected Value: *** \[E[X] = np\]
EV = 8*0.1
EV
## [1] 0.8
*** Standard Deviation *** \[sd = \sqrt(n*p*q)\]
sd = sqrt(8*0.1*0.9)
sd
## [1] 0.8485281
*** Probability ***
\[P(X=8) = \frac{\lambda^xe^{-\lambda}}{x!}\] \[Where\] \[\lambda = \frac{np}{t} = \frac{8*0.1}{1} = 0.8\] \[x = 8\]
p_pois = (0.8^8)*exp(-0.8/8)
p_pois
## [1] 0.1518065
*** Expected Value:***
\[E[X] = \lambda = 0.8\]
*** Standard Deviation:*** \[sd = \sqrt\lambda\]
sd = sqrt(0.8)
sd
## [1] 0.8944272