As the vale is uniformly distributed between 1 and K. Probability of that min value is 1 is P(Y=1) = 1 - P(Y>1) = 1 - ((k-1)/k)^n where n is list of mutually independent variables
P(Y=2) = 1 - P(Y>2) - P(Y=1) = 1 - ((k-2)/k)^n) - (1 - ((k-1)/k)^n) = ((k-1)/k)^n - ((k-2)/k)^n
P(Y=3) = 1 - P(Y>3) - P(Y=2) - P(Y=1) = 1 - ((k-3)/k)^n - (((k-1)/k)^n - ((k-2)/k)^n) - (1 - ((k-1)/k)^n)) = ((k-2)/k)^n) - ((k-3)/k)^n
Going by the pattern or trend, we can observe the below
P(Y=y) = ((k-(y-1))/k)^n) - ((k-y)/k)^n
n <- 10
x <- 8
success_prob <- 1/n
fail_prob <- 1 - success_prob
p <- pgeom(8, success_prob)
paste('Probability of machine failing after 8 years = ' , p)
## [1] "Probability of machine failing after 8 years = 0.612579511"
exp_value <- 1/success_prob
paste('Expected value = ', exp_value)
## [1] "Expected value = 10"
sd <- sqrt((1-success_prob)/success_prob^2)
paste('Standard deviation = ', sd)
## [1] "Standard deviation = 9.48683298050514"
lambda <- 1/10
prob <- pexp(8, lambda, lower.tail = F)
paste('Probability to fail after 8 years using exponential model is ', prob)
## [1] "Probability to fail after 8 years using exponential model is 0.449328964117222"
expVal <- 1/lambda
paste('Expected value = ', expVal)
## [1] "Expected value = 10"
variance <- 1/lambda^2
sd <- sqrt(variance)
paste('SD = ', sd)
## [1] "SD = 10"
Expected value E[X] = np Variance = np(1-p)
p <- 1/10
n <- 8
prob <- dbinom(0, n, p)
paste('Probability of machine failing after 8 years using binomial model = ', prob)
## [1] "Probability of machine failing after 8 years using binomial model = 0.43046721"
exp_value <- n * p
paste('Expected value for fail in 8 years using binomial model = ', exp_value)
## [1] "Expected value for fail in 8 years using binomial model = 0.8"
variance <- n * p * (1-p)
sd <- sqrt(variance)
paste('Standard deviation value for fail in 8 years using binomial model = ', sd)
## [1] "Standard deviation value for fail in 8 years using binomial model = 0.848528137423857"
p <- 1/10
n <- 8
lambda <- n*p
rpob <- ppois(0, lambda)
paste('Probability of machine failing after 8 years using Poisson model = ', prob)
## [1] "Probability of machine failing after 8 years using Poisson model = 0.43046721"
exp_value <- lambda
paste('Expected value for fail in 8 years using Poisson model = ', exp_value)
## [1] "Expected value for fail in 8 years using Poisson model = 0.8"
variance <- lambda
sd <- sqrt(variance)
paste('Standard deviation value for fail in 8 years using Poisson model = ', sd)
## [1] "Standard deviation value for fail in 8 years using Poisson model = 0.894427190999916"