Given Y denote the minimum of the Xi’s.
P(Y) = min(X1, X2, X3, ….. Xn)
Assuming each Xi has k possibilities: 1,2,3,….k, then total number of assignments would be \(k^{n}\). The number of ways of getting X = 1 is k^n - (k - 1)^n / k^n, since k^n is the total number of possibilities and (k-1)^n is all of the options where none of the Xi’s are equal to 1.
P(X=1) = \(\frac{k^{n} - (k-1)^{n}}{k^{n}}\)
Generalizing P(X=2) = \(\frac{(k-2+1)^{n} - (k-2)^{n}}{k^{n}}\)
P(X=3) = \(\frac{(k-3+1)^{n} - (k-3)^{n}}{k^{n}}\)
…..
P(X=t) = \(\frac{(k-t+1)^{n} - (k-t)^{n}}{k^{n}}\)
Geometric Distribution P(T=n) = \(q^{n-1}*p\)
# probability of one failure every ten years
p_fail <- 1/10
# probability of not being failed
p_no_fail <- 1-p_fail
# 8 years
n <- 8
# probability that the machine will fail after 8 years
p_geom <- 1 - pgeom(n-1, p_fail)
p_geom
## [1] 0.4304672
#Expected Value of being failed
exp_val_geom <- 1/p_fail
exp_val_geom
## [1] 10
#Std deviation
sd_geom <- sqrt(p_no_fail/(p_fail^2))
sd_geom
## [1] 9.486833
Exponential Distribution P(X \(\leqslant\) x) = 1 – \(e^{–mx}\) where m is decay parameter.
lambda <- 1/10
# probability that the machine will fail after 8 years
p_expo <- 1 - pexp(n, lambda)
p_expo
## [1] 0.449329
#Expected Value of being failed
exp_val_expo <- 1/lambda
exp_val_expo
## [1] 10
#Std deviation
sd_expo <- sqrt(1/(lambda^2))
sd_expo
## [1] 10
Binomial Distribution b(n, p, k) = \({n \choose k}\) * \(p^{k}\) * \(q^{n-k}\) where q = 1-p
n <- 8
p <- 1/10
q <- 1-p
k <- 0 # 0 success in 8 years
# probability that the machine will fail after 8 years
p_bino <- dbinom(k, n, p)
p_bino
## [1] 0.4304672
#Expected Value of being failed
exp_val_bino <- n*p
exp_val_bino
## [1] 0.8
#Std deviation
sd_bino <- sqrt(n*p*q)
sd_bino
## [1] 0.8485281
Poisson Dstribution P(X=k) = \(e^{- \lambda }\) * \(\frac{\lambda ^{k}}{k!}\)
lambda <- 8/10
k <- 0
# probability that the machine will fail after 8 years
p_pois <- ppois(k, lambda=lambda)
p_pois
## [1] 0.449329
#Expected Value of being failed
exp_val_pois <- lambda
exp_val_pois
## [1] 0.8
#Std deviation
sd_pois <- sqrt(lambda)
sd_pois
## [1] 0.8944272