1 Background

This is a learn by building project to perform data clustering and principle component analysis of Spotify dataset using K-Means Clustering & Principle Component Analysis method.

Founded in 2006, the Spotify’s primary business is providing an audio streaming platform, the “Spotify” platform, that provides DRM-protected music, videos and podcasts from record labels and media companies. As a freemium service, basic features are free with advertisements or automatic music videos, while additional features, such as offline listening and commercial-free listening, are offered via paid subscriptions.

https://en.wikipedia.org/wiki/Spotify

2 Source of Dataset

The analysis will use dataset from https://www.kaggle.com/zaheenhamidani/ultimate-spotify-tracks-db.

3 Initialization Library

## Warning: package 'tidyverse' was built under R version 3.6.2
## -- Attaching packages ------------------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1     v purrr   0.3.3
## v tibble  2.1.3     v dplyr   0.8.3
## v tidyr   1.0.0     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## Warning: package 'ggplot2' was built under R version 3.6.2
## Warning: package 'tibble' was built under R version 3.6.2
## Warning: package 'tidyr' was built under R version 3.6.2
## Warning: package 'readr' was built under R version 3.6.2
## Warning: package 'purrr' was built under R version 3.6.2
## Warning: package 'dplyr' was built under R version 3.6.2
## Warning: package 'stringr' was built under R version 3.6.2
## Warning: package 'forcats' was built under R version 3.6.2
## -- Conflicts ---------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Warning: package 'FactoMineR' was built under R version 3.6.3
## Warning: package 'factoextra' was built under R version 3.6.2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
## Warning: package 'animation' was built under R version 3.6.2

4 Dataset Exploration

##        ï..genre                       artist_name       track_name    
##  Comedy    :  9681   Giuseppe Verdi         :  1394   Home   :   100  
##  Soundtrack:  9646   Giacomo Puccini        :  1137   You    :    71  
##  Indie     :  9543   Kimbo Children's Music :   971   Intro  :    69  
##  Jazz      :  9441   Nobuo Uematsu          :   825   Stay   :    63  
##  Pop       :  9386   Richard Wagner         :   804   Wake Up:    59  
##  Electronic:  9377   Wolfgang Amadeus Mozart:   800   Closer :    58  
##  (Other)   :175651   (Other)                :226794   (Other):232305  
##                    track_id        popularity      acousticness   
##  0UE0RhnRaEYsiYgXpyLoZc:     8   Min.   :  0.00   Min.   :0.0000  
##  0wY9rA9fJkuESyYm9uzVK5:     8   1st Qu.: 29.00   1st Qu.:0.0376  
##  3R73Y7X53MIQZWnKloWq5i:     8   Median : 43.00   Median :0.2320  
##  3uSSjnDMmoyERaAK9KvpJR:     8   Mean   : 41.13   Mean   :0.3686  
##  6AIte2Iej1QKlaofpjCzW1:     8   3rd Qu.: 55.00   3rd Qu.:0.7220  
##  6sVQNUvcVFTXvlk3ec0ngd:     8   Max.   :100.00   Max.   :0.9960  
##  (Other)               :232677                                    
##   danceability     duration_ms          energy         instrumentalness   
##  Min.   :0.0569   Min.   :  15387   Min.   :2.03e-05   Min.   :0.0000000  
##  1st Qu.:0.4350   1st Qu.: 182857   1st Qu.:3.85e-01   1st Qu.:0.0000000  
##  Median :0.5710   Median : 220427   Median :6.05e-01   Median :0.0000443  
##  Mean   :0.5544   Mean   : 235122   Mean   :5.71e-01   Mean   :0.1483012  
##  3rd Qu.:0.6920   3rd Qu.: 265768   3rd Qu.:7.87e-01   3rd Qu.:0.0358000  
##  Max.   :0.9890   Max.   :5552917   Max.   :9.99e-01   Max.   :0.9990000  
##                                                                           
##       key           liveness          loudness          mode       
##  C      :27583   Min.   :0.00967   Min.   :-52.457   Major:151744  
##  G      :26390   1st Qu.:0.09740   1st Qu.:-11.771   Minor: 80981  
##  D      :24077   Median :0.12800   Median : -7.762                 
##  C#     :23201   Mean   :0.21501   Mean   : -9.570                 
##  A      :22671   3rd Qu.:0.26400   3rd Qu.: -5.501                 
##  F      :20279   Max.   :1.00000   Max.   :  3.744                 
##  (Other):88524                                                     
##   speechiness         tempo        time_signature    valence      
##  Min.   :0.0222   Min.   : 30.38   0/4:     8     Min.   :0.0000  
##  1st Qu.:0.0367   1st Qu.: 92.96   1/4:  2608     1st Qu.:0.2370  
##  Median :0.0501   Median :115.78   3/4: 24111     Median :0.4440  
##  Mean   :0.1208   Mean   :117.67   4/4:200760     Mean   :0.4549  
##  3rd Qu.:0.1050   3rd Qu.:139.05   5/4:  5238     3rd Qu.:0.6600  
##  Max.   :0.9670   Max.   :242.90                  Max.   :1.0000  
## 
## 'data.frame':    232725 obs. of  18 variables:
##  $ ï..genre        : Factor w/ 27 levels "A Capella","Alternative",..: 16 16 16 16 16 16 16 16 16 16 ...
##  $ artist_name     : Factor w/ 14564 levels "'Til Tuesday",..: 5283 8366 6575 5283 4140 5283 8366 7434 2465 7469 ...
##  $ track_name      : Factor w/ 148615 levels "' Cello Song",..: 20191 96046 34319 33138 93914 71569 99298 72873 52992 72167 ...
##  $ track_id        : Factor w/ 176774 levels "00021Wy6AyMbLP2tqij86e",..: 4971 4768 5608 8233 10160 12589 13641 14649 17254 19465 ...
##  $ popularity      : int  0 1 3 0 4 0 2 15 0 10 ...
##  $ acousticness    : num  0.611 0.246 0.952 0.703 0.95 0.749 0.344 0.939 0.00104 0.319 ...
##  $ danceability    : num  0.389 0.59 0.663 0.24 0.331 0.578 0.703 0.416 0.734 0.598 ...
##  $ duration_ms     : int  99373 137373 170267 152427 82625 160627 212293 240067 226200 152694 ...
##  $ energy          : num  0.91 0.737 0.131 0.326 0.225 0.0948 0.27 0.269 0.481 0.705 ...
##  $ instrumentalness: num  0 0 0 0 0.123 0 0 0 0.00086 0.00125 ...
##  $ key             : Factor w/ 12 levels "A","A#","B","C",..: 5 10 4 5 9 5 5 10 4 11 ...
##  $ liveness        : num  0.346 0.151 0.103 0.0985 0.202 0.107 0.105 0.113 0.0765 0.349 ...
##  $ loudness        : num  -1.83 -5.56 -13.88 -12.18 -21.15 ...
##  $ mode            : Factor w/ 2 levels "Major","Minor": 1 2 2 1 1 1 1 1 1 1 ...
##  $ speechiness     : num  0.0525 0.0868 0.0362 0.0395 0.0456 0.143 0.953 0.0286 0.046 0.0281 ...
##  $ tempo           : num  167 174 99.5 171.8 140.6 ...
##  $ time_signature  : Factor w/ 5 levels "0/4","1/4","3/4",..: 4 4 5 4 4 4 4 4 4 4 ...
##  $ valence         : num  0.814 0.816 0.368 0.227 0.39 0.358 0.533 0.274 0.765 0.718 ...

4.1 Dataset Dictionary

The name of variables are as follows:

1.ï..genre:
Type of Genre

2.artist_name:
Artis Name

3.track_name:
Track Name

4.track_id:
Track Id

5.popularity:
Level of Popularity

6.acousticness:
A confidence measure from 0.0 to 1.0 of whether the track is acoustic.A value of 1.0 represents high confidence the track is acoustic.

7.danceability:
Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable.

8.duration_ms:
The duration of the track in milliseconds.

9.energy:
Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate, and general entropy.

10.instrumentalness:
Predicts whether a track contains no vocals. “Ooh” and “aah” sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly “vocal”. The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content. Values above 0.5 are intended to represent instrumental tracks, but confidence is higher as the value approaches 1.0.

11.key:
The estimated overall key of the track. Integers map to pitches using standard Pitch Class notation. E.g. 0 = C, 1 = C♯/D♭, 2 = D, and so on. If no key was detected, the value is -1.

12.liveness:
Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live. A value above 0.8 provides strong likelihood that the track is live.

13.loudness:
The overall loudness of a track in decibels (dB). Loudness values are averaged across the entire track and are useful for comparing relative loudness of tracks. Loudness is the quality of a sound that is the primary psychological correlate of physical strength (amplitude). Values typical range between -60 and 0 db.

14.mode:
Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic content is derived. Major is represented by 1 and minor is 0.

15.speechiness:
Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks that are probably made entirely of spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music and speech, either in sections or layered, including such cases as rap music. Values below 0.33 most likely represent music and other non-speech-like tracks.

16.tempo:
The overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the speed or pace of a given piece and derives directly from the average beat duration.

17.time_signature:
An estimated overall time signature of a track. The time signature (meter) is a notational convention to specify how many beats are in each bar (or measure).

18.valence:
A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed, angry).

4.2 Dataset Inspection

##         ï..genre      artist_name       track_name         track_id 
##                0                0                0                0 
##       popularity     acousticness     danceability      duration_ms 
##                0                0                0                0 
##           energy instrumentalness              key         liveness 
##                0                0                0                0 
##         loudness             mode      speechiness            tempo 
##                0                0                0                0 
##   time_signature          valence 
##                0                0

We found no na from the variables dataset.

## 'data.frame':    232725 obs. of  15 variables:
##  $ ï..genre        : Factor w/ 27 levels "A Capella","Alternative",..: 16 16 16 16 16 16 16 16 16 16 ...
##  $ popularity      : int  0 1 3 0 4 0 2 15 0 10 ...
##  $ acousticness    : num  0.611 0.246 0.952 0.703 0.95 0.749 0.344 0.939 0.00104 0.319 ...
##  $ danceability    : num  0.389 0.59 0.663 0.24 0.331 0.578 0.703 0.416 0.734 0.598 ...
##  $ duration_ms     : int  99373 137373 170267 152427 82625 160627 212293 240067 226200 152694 ...
##  $ energy          : num  0.91 0.737 0.131 0.326 0.225 0.0948 0.27 0.269 0.481 0.705 ...
##  $ instrumentalness: num  0 0 0 0 0.123 0 0 0 0.00086 0.00125 ...
##  $ key             : Factor w/ 12 levels "A","A#","B","C",..: 5 10 4 5 9 5 5 10 4 11 ...
##  $ liveness        : num  0.346 0.151 0.103 0.0985 0.202 0.107 0.105 0.113 0.0765 0.349 ...
##  $ loudness        : num  -1.83 -5.56 -13.88 -12.18 -21.15 ...
##  $ mode            : Factor w/ 2 levels "Major","Minor": 1 2 2 1 1 1 1 1 1 1 ...
##  $ speechiness     : num  0.0525 0.0868 0.0362 0.0395 0.0456 0.143 0.953 0.0286 0.046 0.0281 ...
##  $ tempo           : num  167 174 99.5 171.8 140.6 ...
##  $ time_signature  : Factor w/ 5 levels "0/4","1/4","3/4",..: 4 4 5 4 4 4 4 4 4 4 ...
##  $ valence         : num  0.814 0.816 0.368 0.227 0.39 0.358 0.533 0.274 0.765 0.718 ...

We excluded variables artist_name, track_name, track_id due to many level in the factor data type.

We focused on the Jazz genre for further clustering analysis.

## 'data.frame':    9441 obs. of  10 variables:
##  $ popularity      : int  74 79 72 74 69 67 66 68 67 68 ...
##  $ acousticness    : num  0.014 0.114 0.524 0.707 0.125 0.846 0.729 0.936 0.906 0.81 ...
##  $ danceability    : num  0.643 0.697 0.609 0.171 0.561 0.569 0.271 0.464 0.601 0.421 ...
##  $ duration_ms     : int  192840 214827 236738 182400 193750 282320 139227 255227 184004 337733 ...
##  $ energy          : num  0.72 0.809 0.435 0.33 0.474 0.117 0.165 0.305 0.222 0.0161 ...
##  $ instrumentalness: num  0.00 5.21e-04 0.00 3.81e-03 5.07e-06 8.52e-01 1.60e-06 8.46e-02 4.11e-05 2.10e-03 ...
##  $ liveness        : num  0.0834 0.183 0.118 0.302 0.0922 0.0978 0.118 0.208 0.0723 0.0978 ...
##  $ loudness        : num  -7.15 -8.2 -7.86 -9.7 -9.64 ...
##  $ speechiness     : num  0.0527 0.0302 0.284 0.0329 0.155 0.0446 0.0351 0.0316 0.0303 0.0374 ...
##  $ tempo           : num  96 125.9 132 174.4 86.9 ...

We excluded variables factor data type for further data scaling pre-processing.

5 Principal Component Analysis (PCA)

5.1 Data Pre-Processing

We will have our data properly scaled in order to get a useful PCA.

5.2 Build Principal Component

We will generate the principal component from spotify_scale.

## 
## Call:
## PCA(X = spotify_scale, scale.unit = FALSE, ncp = 10, graph = F) 
## 
## 
## Eigenvalues
##                        Dim.1   Dim.2   Dim.3   Dim.4   Dim.5   Dim.6   Dim.7
## Variance               2.633   1.334   1.193   1.095   0.980   0.835   0.748
## % of var.             26.337  13.342  11.934  10.950   9.804   8.353   7.480
## Cumulative % of var.  26.337  39.679  51.613  62.563  72.367  80.720  88.200
##                        Dim.8   Dim.9  Dim.10
## Variance               0.610   0.396   0.174
## % of var.              6.099   3.965   1.735
## Cumulative % of var.  94.299  98.265 100.000
## 
## Individuals (the 10 first)
##                      Dist    Dim.1    ctr   cos2    Dim.2    ctr   cos2  
## 1                |  4.236 |  1.653  0.011  0.152 | -1.086  0.009  0.066 |
## 2                |  4.651 |  1.751  0.012  0.142 | -0.646  0.003  0.019 |
## 3                |  4.449 |  0.762  0.002  0.029 | -1.897  0.029  0.182 |
## 4                |  5.144 | -1.232  0.006  0.057 |  0.773  0.005  0.023 |
## 5                |  3.648 |  0.713  0.002  0.038 | -1.584  0.020  0.189 |
## 6                |  4.699 | -3.161  0.040  0.453 | -1.002  0.008  0.045 |
## 7                |  4.561 | -3.043  0.037  0.445 | -0.973  0.008  0.045 |
## 8                |  3.421 | -1.597  0.010  0.218 | -0.413  0.001  0.015 |
## 9                |  3.480 | -1.311  0.007  0.142 | -1.432  0.016  0.169 |
## 10               |  4.965 | -3.676  0.054  0.548 | -0.269  0.001  0.003 |
##                   Dim.3    ctr   cos2  
## 1                 0.777  0.005  0.034 |
## 2                 1.322  0.016  0.081 |
## 3                 2.167  0.042  0.237 |
## 4                 3.039  0.082  0.349 |
## 5                 1.122  0.011  0.095 |
## 6                -0.772  0.005  0.027 |
## 7                 1.267  0.014  0.077 |
## 8                 1.580  0.022  0.213 |
## 9                 1.007  0.009  0.084 |
## 10                1.281  0.015  0.067 |
## 
## Variables
##                     Dim.1    ctr   cos2    Dim.2    ctr   cos2    Dim.3    ctr
## popularity       | -0.072  0.194  0.005 | -0.196  2.878  0.038 |  0.290  7.059
## acousticness     | -0.820 25.521  0.672 | -0.155  1.801  0.024 |  0.165  2.278
## danceability     |  0.502  9.563  0.252 | -0.515 19.873  0.265 | -0.278  6.455
## duration_ms      |  0.006  0.001  0.000 |  0.737 40.716  0.543 |  0.032  0.085
## energy           |  0.903 30.954  0.815 |  0.208  3.249  0.043 | -0.023  0.043
## instrumentalness | -0.099  0.374  0.010 |  0.212  3.373  0.045 | -0.741 45.961
## liveness         |  0.119  0.535  0.014 |  0.245  4.506  0.060 |  0.565 26.798
## loudness         |  0.866 28.495  0.750 |  0.016  0.020  0.000 |  0.064  0.342
## speechiness      |  0.311  3.678  0.097 | -0.454 15.473  0.206 |  0.291  7.120
## tempo            |  0.134  0.683  0.018 |  0.329  8.110  0.108 |  0.215  3.859
##                    cos2  
## popularity        0.084 |
## acousticness      0.027 |
## danceability      0.077 |
## duration_ms       0.001 |
## energy            0.001 |
## instrumentalness  0.548 |
## liveness          0.320 |
## loudness          0.004 |
## speechiness       0.085 |
## tempo             0.046 |

We have to use 7 Principal Components (PCs) if we only tolerate no more than 15% of information loss.

We will visualize high dimensional data into 2 dimensional plot for various purposes, such as cluster analysis or detecting any outliers.

We found 5 song-id considered as outliers: 3311, 4800, 5089, 6516, 9222

## [1]  99.180 115.299 182.349 170.012  76.868

## $quanti
##                  correlation       p.value
## energy            0.90291391  0.000000e+00
## loudness          0.86631176  0.000000e+00
## danceability      0.50185684  0.000000e+00
## speechiness       0.31125248 3.680572e-211
## tempo             0.13410724  3.859506e-39
## liveness          0.11868880  5.728887e-31
## popularity       -0.07156306  3.368689e-12
## instrumentalness -0.09928999  4.039131e-22
## acousticness     -0.81985575  0.000000e+00
## 
## attr(,"class")
## [1] "condes" "list "

Based on correlation between variables within Dimension 1 or PC 1, We found 5 variables considered as most contributing variables, i.e: energy, loudness, danceability, speechiness, acousticness.

6 K-Means Clustering

Before clustering the dataset, We will remove the identified outlier based on the previous individual PCA plot.

## 'data.frame':    9436 obs. of  10 variables:
##  $ popularity      : int  74 79 72 74 69 67 66 68 67 68 ...
##  $ acousticness    : num  0.014 0.114 0.524 0.707 0.125 0.846 0.729 0.936 0.906 0.81 ...
##  $ danceability    : num  0.643 0.697 0.609 0.171 0.561 0.569 0.271 0.464 0.601 0.421 ...
##  $ duration_ms     : int  192840 214827 236738 182400 193750 282320 139227 255227 184004 337733 ...
##  $ energy          : num  0.72 0.809 0.435 0.33 0.474 0.117 0.165 0.305 0.222 0.0161 ...
##  $ instrumentalness: num  0.00 5.21e-04 0.00 3.81e-03 5.07e-06 8.52e-01 1.60e-06 8.46e-02 4.11e-05 2.10e-03 ...
##  $ liveness        : num  0.0834 0.183 0.118 0.302 0.0922 0.0978 0.118 0.208 0.0723 0.0978 ...
##  $ loudness        : num  -7.15 -8.2 -7.86 -9.7 -9.64 ...
##  $ speechiness     : num  0.0527 0.0302 0.284 0.0329 0.155 0.0446 0.0351 0.0316 0.0303 0.0374 ...
##  $ tempo           : num  96 125.9 132 174.4 86.9 ...

We will have our new data scaled in order to get a new PCA.

6.2 Building Cluster

## Warning in RNGkind(sample.kind = "Rounding"): non-uniform 'Rounding' sampler
## used

## 
##    1    2    3    4    5    6 
## 0.24 0.25 0.07 0.06 0.25 0.14

From the figures above, the biggest 4 clusters is cluster #1 (24%), cluster #2 (25%), cluster #5 (25%), and cluster #6 (14%), which account for 88% out of 6 six clusters.

6.3 Clusters Profiling

We will create a Jazz cluster profiling by using a combination of group_by() and summarise_all(), grouped by the previously created cluster column.

From the figures above, the characteristic summary of Jazz Spotify songs in the same cluster are as follows:

  • Cluster 1: Highest popularity

  • Cluster 2: Highest energy, highest loudness

  • Cluster 3: Highest danceability, highest speechines

  • Cluster 4: Highest duration, highest liveness, highest tempo

  • Cluster 5: Highest instrumentalness

  • Cluster 6: Highest acousticness