In August of 2012, news outlets ranging from the Washington Post to the Huffington Post ran a story about the rise of atheism in America. The source for the story was a poll that asked people, “Irrespective of whether you attend a place of worship or not, would you say you are a religious person, not a religious person or a convinced atheist?” This type of question, which asks people to classify themselves in one way or another, is common in polling and generates categorical data. In this lab we take a look at the atheism survey and explore what’s at play when making inference about population proportions using categorical data.
To access the press release for the poll, conducted by WIN-Gallup International, click on the following link:
Take a moment to review the report then address the following questions.
These percentages are sample statistics, as they are statistics pertaining to only those questioned in the poll, and not the entire population (humanity as a whole)
We must assume that the sample is infact a truly random, unbiased sample of every person in the world. Getting a truly random unbaised sample is fairly unlikely. Some groups might respond more than others, maybe poll turnout was more sucessful in some regions than others, maybe they polled over landline. Getting a truly representative would be difficult, but this will likely do for our purposes.
Turn your attention to Table 6 (pages 15 and 16), which reports the sample size and response percentages for all 57 countries. While this is a useful format to summarize the data, we will base our analysis on the original data set of individual responses to the survey. Load this data set into R with the following command.
atheism
correspond to?Each row of table 6 corrisponds to a country, it’s sample size, and the percentages of it’s respondents religous attitudes; one row per country. Each row of athesim corresponds to a nationality, a responce, and a year; one row per respondent
To investigate the link between these two ways of organizing this data, take a look at the estimated proportion of atheists in the United States. Towards the bottom of Table 6, we see that this is 5%. We should be able to come to the same number using the atheism
data.
us12
that contains only the rows in atheism
associated with respondents to the 2012 survey from the United States. Next, calculate the proportion of atheist responses. Does it agree with the percentage in Table 6? If not, why?## [1] 0.0499002
It agrees with the percentage in table 6. It uses the same data.
As was hinted at in Exercise 1, Table 6 provides statistics, that is, calculations made from the sample of 51,927 people. What we’d like, though, is insight into the population parameters. You answer the question, “What proportion of people in your sample reported being atheists?” with a statistic; while the question “What proportion of people on earth would report being atheists” is answered with an estimate of the parameter.
The inferential tools for estimating population proportion are analogous to those used for means in the last chapter: the confidence interval and the hypothesis test.
The conditions for inference are: The sample needs to be random, the distribution should be normal, there need to be ore than 10 sucesses and 10 failures, there needs to be less than 10% of the population sampled, and the observations need to be independent. I’m not confident the sample is truly random; they employed several different types of interviews, and the answers are dependent on the fact that individuals responded. Also some sub-samples (i.e. different countries) do not meet the conditions for inference. However, on a whole, it will do.
If the conditions for inference are reasonable, we can either calculate the standard error and construct the interval by hand, or allow the inference
function to do it for us.
inference(us12$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0499 ; n = 1002
## Check conditions: number of successes = 50 ; number of failures = 952
## Standard error = 0.0069
## 95 % Confidence interval = ( 0.0364 , 0.0634 )
Note that since the goal is to construct an interval estimate for a proportion, it’s necessary to specify what constitutes a “success”, which here is a response of "atheist"
.
Although formal confidence intervals and hypothesis tests don’t show up in the report, suggestions of inference appear at the bottom of page 7: “In general, the error margin for surveys of this kind is \(\pm\) 3-5% at 95% confidence”.
The margin of error is 0.0135
inference
function, calculate confidence intervals for the proportion of atheists in 2012 in two other countries of your choice, and report the associated margins of error. Be sure to note whether the conditions for inference are met. It may be helpful to create new data sets for each of the two countries first, and then use these data sets in the inference
function to construct the confidence intervals.#Subset for India
in12 <- subset(atheism, nationality == "India" & year == "2012")
inference(in12$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0302 ; n = 1092
## Check conditions: number of successes = 33 ; number of failures = 1059
## Standard error = 0.0052
## 95 % Confidence interval = ( 0.0201 , 0.0404 )
The margin of error for India is 0.0101. The conditions for inference here are the same as for the US dataset; I still have reservations about how truly random the samples are.
#Subset for Austria
as12 <- subset(atheism, nationality == "Austria" & year == "2012")
inference(as12$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0998 ; n = 1002
## Check conditions: number of successes = 100 ; number of failures = 902
## Standard error = 0.0095
## 95 % Confidence interval = ( 0.0812 , 0.1184 )
The margin of error for Austria is 0.0186 The conditions for inference here are the same as for the US dataset; I still have reservations about how truly random the samples are.
Imagine you’ve set out to survey 1000 people on two questions: are you female? and are you left-handed? Since both of these sample proportions were calculated from the same sample size, they should have the same margin of error, right? Wrong! While the margin of error does change with sample size, it is also affected by the proportion.
Think back to the formula for the standard error: \(SE = \sqrt{p(1-p)/n}\). This is then used in the formula for the margin of error for a 95% confidence interval: \(ME = 1.96\times SE = 1.96\times\sqrt{p(1-p)/n}\). Since the population proportion \(p\) is in this \(ME\) formula, it should make sense that the margin of error is in some way dependent on the population proportion. We can visualize this relationship by creating a plot of \(ME\) vs. \(p\).
The first step is to make a vector p
that is a sequence from 0 to 1 with each number separated by 0.01. We can then create a vector of the margin of error (me
) associated with each of these values of p
using the familiar approximate formula (\(ME = 2 \times SE\)). Lastly, we plot the two vectors against each other to reveal their relationship.
n <- 1000
p <- seq(0, 1, 0.01)
me <- 2 * sqrt(p * (1 - p)/n)
plot(me ~ p, ylab = "Margin of Error", xlab = "Population Proportion")
p
and me
.me increases to a maximum as p approached 0.5, and is 0 at p = 0.0 or 1.0. (p-p^2)
The textbook emphasizes that you must always check conditions before making inference. For inference on proportions, the sample proportion can be assumed to be nearly normal if it is based upon a random sample of independent observations and if both \(np \geq 10\) and \(n(1 - p) \geq 10\). This rule of thumb is easy enough to follow, but it makes one wonder: what’s so special about the number 10?
The short answer is: nothing. You could argue that we would be fine with 9 or that we really should be using 11. What is the “best” value for such a rule of thumb is, at least to some degree, arbitrary. However, when \(np\) and \(n(1-p)\) reaches 10 the sampling distribution is sufficiently normal to use confidence intervals and hypothesis tests that are based on that approximation.
We can investigate the interplay between \(n\) and \(p\) and the shape of the sampling distribution by using simulations. To start off, we simulate the process of drawing 5000 samples of size 1040 from a population with a true atheist proportion of 0.1. For each of the 5000 samples we compute \(\hat{p}\) and then plot a histogram to visualize their distribution.
set.seed("1234567890")
p <- 0.1
n <- 1040
p_hats <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n
}
hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))
These commands build up the sampling distribution of \(\hat{p}\) using the familiar for
loop. You can read the sampling procedure for the first line of code inside the for
loop as, “take a sample of size \(n\) with replacement from the choices of atheist and non-atheist with probabilities \(p\) and \(1 - p\), respectively.” The second line in the loop says, “calculate the proportion of atheists in this sample and record this value.” The loop allows us to repeat this process 5,000 times to build a good representation of the sampling distribution.
mean
to calculate summary statistics.## [1] 0.09954423
## [1] 0.009376353
The sampling distribution is cetered around 0.10 (p), with an stdev of around 0.01; the distribution is normal.
Repeat the above simulation three more times but with modified sample sizes and proportions: for \(n = 400\) and \(p = 0.1\), \(n = 1040\) and \(p = 0.02\), and \(n = 400\) and \(p = 0.02\). Plot all four histograms together by running the par(mfrow = c(2, 2))
command before creating the histograms. You may need to expand the plot window to accommodate the larger two-by-two plot. Describe the three new sampling distributions. Based on these limited plots, how does \(n\) appear to affect the distribution of \(\hat{p}\)? How does \(p\) affect the sampling distribution?
set.seed("123450")
p <- 0.1
n <- 400
p_hats <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n
}
par(mfrow = c(2, 2))
hist(p_hats, main = "p = 0.1, n = 400", xlim = c(0, 0.4), ylim=c(0,1500))
mean(p_hats)
## [1] 0.1002345
## [1] 0.01515585
p <- 0.2
n <- 1040
p_hats <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n
}
hist(p_hats, main = "p = 0.2, n = 1040", xlim = c(0, 0.4), ylim=c(0,1500))
mean(p_hats)
## [1] 0.1998265
## [1] 0.01248207
p <- 0.2
n <- 400
p_hats <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n
}
hist(p_hats, main = "p = 0.2, n = 400", xlim = c(0, 0.4), ylim=c(0,1500))
mean(p_hats)
## [1] 0.1997025
## [1] 0.01989069
p <- 0.1
n <- 1040
p_hats <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n
}
hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.4), ylim=c(0,1500))
## [1] 0.09995942
## [1] 0.009358302
The sampling distributions are centered around their respective p’s. n determines the spread of each distribution, with higher n’s corrisponding to tighter spreads, and higher p’s correlating to wider spreads. The distributions are all normal
Once you’re done, you can reset the layout of the plotting window by using the command par(mfrow = c(1, 1))
command or clicking on “Clear All” above the plotting window (if using RStudio). Note that the latter will get rid of all your previous plots.
Australia meets the conditions for inference, however Equador does not, as it only has 8 ‘sucesses’ (needs 10).
The question of atheism was asked by WIN-Gallup International in a similar survey that was conducted in 2005. (We assume here that sample sizes have remained the same.) Table 4 on page 13 of the report summarizes survey results from 2005 and 2012 for 39 countries.
Answer the following two questions using the inference
function. As always, write out the hypotheses for any tests you conduct and outline the status of the conditions for inference.
a. Is there convincing evidence that Spain has seen a change in its atheism index between 2005 and 2012?
Hint: Create a new data set for respondents from Spain. Form confidence intervals for the true proportion of athiests in both years, and determine whether they overlap.
sp05 <- subset(atheism, nationality == "Spain" & year == "2005")
inference(sp05$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.1003 ; n = 1146
## Check conditions: number of successes = 115 ; number of failures = 1031
## Standard error = 0.0089
## 95 % Confidence interval = ( 0.083 , 0.1177 )
sp12 <- subset(atheism, nationality == "Spain" & year == "2012")
inference(sp12$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.09 ; n = 1145
## Check conditions: number of successes = 103 ; number of failures = 1042
## Standard error = 0.0085
## 95 % Confidence interval = ( 0.0734 , 0.1065 )
The conditions for inference here are met. The hypothesis is that if the confidence intervals for both of the years don’t overlap, then there is sufficent evidence to say that there was change in Spain’s atheism index. The confidence intervals do overlap, so there is not enough evidence to say that there was a change in the atheism index.
**b.** Is there convincing evidence that the United States has seen a
change in its atheism index between 2005 and 2012?
us05 <- subset(atheism, nationality == "United States" & year == "2005")
inference(us05$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.01 ; n = 1002
## Check conditions: number of successes = 10 ; number of failures = 992
## Standard error = 0.0031
## 95 % Confidence interval = ( 0.0038 , 0.0161 )
us122 <- subset(atheism, nationality == "United States" & year == "2012")
inference(us122$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0499 ; n = 1002
## Check conditions: number of successes = 50 ; number of failures = 952
## Standard error = 0.0069
## 95 % Confidence interval = ( 0.0364 , 0.0634 )
The conditions for inference here are met, although just barely (there are exactly 10 successes for 2005). The hypothesis is that if the confidence intervals for both of the years don’t overlap, then there is sufficent evidence to say that there was change in US’s atheism index. The confidence intervals do not overlap, and thus we can say that there is enough evidence that the US observed a change in it’s atheism index between 2005 and 2012.
At a significance level of 0.05, you would expect changes detected within 5% of the countires simply by chance.
While the z score for 95% is 1.96, and if p is at maximum 0.5: ME = 1.96 * sqrt(p * (1 - p)/n)
0.01 = 1.96 * sqrt(0.5 * (1 - 0.5)/n)
0.0196 = sqrt(0.5 * (1 - 0.5)/n)
0.00038416 = 0.5 * (1 - 0.5)/n
0.00019208 = 0.5/n
1/n = 0.00038416
n < 2603.082 (need to round up)
n < 2604
You would need a sample of at least 2604