Variables
merged2 <- merged %>%
remove_rownames %>%
column_to_rownames(var="Nom_Barri") %>%
select("n.tot","pc.esp","pc.ext","pc.ue27-esp","pc.20.34","2019-2014","var20192014",
"hotel2019",
"alq.mq","alq.num","alq.pmq",
"tot_ann","pc.ent","pc.priv","pc.shared","pc.hotel","pm_ent","pm_priv","pm_sha","pm_hot",
"RFD.2017",
"tot.comp","perc.nou.comp","perc.prot.comp","perc.usat.comp",
"tot.m2","nou.m2","prot.m2","usat.m2",
"tot.eur","nou.eur","usat.eur",
"tot.eurm2","nou.eurm2","usat.eurm2")
Standardizar los datos
df <- scale(merged2)
Hier
d <- dist(df, method = "euclidean")
#ward hier
res.hc <- hclust(d, method = "ward.D2" )
#plot
plot(res.hc, cex = 0.6, hang = -1)
Cut 3
grp3 <- cutree(res.hc, k = 3)
table(grp3)
## grp3
## 1 2 3
## 18 10 45
plot(res.hc, cex = 0.6)
rect.hclust(res.hc, k = 3, border = 2:5)
Cut 4
grp4 <- cutree(res.hc, k = 4)
table(grp4)
## grp4
## 1 2 3 4
## 18 10 6 39
plot(res.hc, cex = 0.6)
rect.hclust(res.hc, k = 4, border = 2:5)
Cut 5
grp5 <- cutree(res.hc, k = 5)
table(grp5)
## grp5
## 1 2 3 4 5
## 4 10 14 6 39
plot(res.hc, cex = 0.6)
rect.hclust(res.hc, k = 5, border = 2:5)