---
title: "COVID-19 in India"
author: "Sandeep N"
output:
flexdashboard::flex_dashboard:
orientation: columns
social: menu
source_code: embed
vertical_layout: fill
---
```{r setup, include=FALSE}
devtools::install_github("RamiKrispin/coronavirus")
covid<-coronavirus::coronavirus
library(flexdashboard)
library(coronavirus)
library(earlyR)
library(EpiEstim)
library(incidence)
library(distcrete)
library(janitor)
library(tidyverse)
library(lubridate)
library(rvest)
library(plotly)
library(echarts4r.maps)
library(echarts4r)
```
Sidebar {.sidebar}
=======================================================================
### Acknowledgement
This dashboard presents information on COVID-19. The package coronavirus is available on CRAN of [John Hopkins University](https://hub.jhu.edu/2020/01/23/coronavirus-outbreak-mapping-tool-649-em1-art1-dtd-health/). The dataset is updated every day by @Rami_Krispin (https://ramikrispin.github.io/coronavirus/).
I would like to thank Rubén F. Bustillo (https://rpubs.com/rubenfbc/coronavirus) whose dashboard helped me in improvising my work and to come across echarts4r.
India
=======================================================================
Column {data-width=550}
-----------------------------------------------------------------------
### Daily Incidence in India
```{r}
data <- covid %>%
filter(Country.Region %in% "India")
ggplotly(ggplot(data = data, aes(date,cases, fill = type)) +
geom_col(position = "nudge")+
theme_minimal() +
geom_text(aes(label = cases, y = cases+0.5)) +
ggtitle("Incidence cases of COVID-19 in India",
"As of 9th march "))
```
Column {data-width=450}
-----------------------------------------------------------------------
### The reproductive number (R0) is calculated from the R package earlyR by assuming serial interval mean and standard deviation 7.5 and 3.4 respectively. The reproductive number for COVID-19 virus is understood to be between 2 to 2.5 according to the [Situation Report – 46 of WHO](https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_2)
```{r}
inci <- incidence(data$date)
rep <- get_R(inci,si_mean = 7.5, si_sd = 3.4, max_R = 10 )
plot(rep)
```
### State wise Incidence as per Wikipedia
```{r}
wp_page_url <- "https://en.wikipedia.org/wiki/2020_coronavirus_outbreak_in_India"
# read the page using the rvest package.
outbreak_webpage <- read_html(wp_page_url)
title <- outbreak_webpage %>%
html_node("title") %>%
html_text()
# parse the web page and extract the data from the second table
India_cases <- outbreak_webpage %>% html_nodes("table") %>% .[[3]] %>%
html_table(fill = TRUE)
colnames(India_cases) <- India_cases[1,]
India_cases <- data.frame(India_cases[c(-1),])
n <- dim(India_cases)[1]
sub <- India_cases$State.or.Union.territory[n-1]
Total <- India_cases$Cases[n-2]
India_cases <- India_cases[c(-n,-(n-1),-(n-2)) ,]
Deaths <- sum(as.numeric(India_cases$Deaths))
Recovery <- sum(as.numeric(India_cases$Recoveries))
India_cases %>%
ggplot(aes(reorder(State.or.Union.territory, as.numeric(Cases)),
as.numeric(Cases), fill = State.or.Union.territory)) +
geom_col()+
#scale_fill_viridis(discrete = TRUE)+
theme_minimal()+
theme(legend.position = "none",
axis.text = element_text(colour = "black", size = 10))+
coord_flip() +
geom_text(aes(label = Cases, y = as.numeric(Cases)+0.8), size = 6)+
ggtitle(title, paste("As of (",Sys.time(),")")) +
xlab("") + ylab("Number of confirmed cases") +
labs(caption = sub) +
annotate("text", x = 2.4, y = 10, label = paste(Total,"- Total confirmed cases in India"),
fontface = "bold")+
annotate("text", x = 1.4, y = 10, label = paste(Deaths,"Deaths and", Recovery, "Recoveries"))
```
World
=======================================================================
```{r}
data <- covid %>%
group_by(Country.Region, type) %>%
summarise(total = sum(cases)) %>%
pivot_wider(names_from = type,
values_from = total) %>%
ungroup() %>%
mutate(country = trimws(Country.Region))
map <- data %>%
mutate(country = recode_factor(country,
"US" = "United States",
"Mainland China" = "China",
"UK" = "United Kingdom",
"UAE" = "United Arab Emirates",
"South Korea"= "Korea"))
map %>%
e_charts(country) %>%
e_map(confirmed) %>%
e_title("Confirmed Cases", left= "center") %>%
e_visual_map()
#e_theme("infographic")
```