# Coding Club Workshop 1 - R Basics
# Aprendiendo como importar y explorar datos, y hacer graficos sobre l biodiversidad de Edinburgo
# Written by Jesús Ortiz 11/03/2020 Universidad Nacional de Colombia
getwd()
## [1] "C:/Users/yisus/Documents"
setwd("C:/Users/yisus/Documents/CC-1-RBasics-master")
edidiv <- read.csv("C:/Users/yisus/Documents/CC-1-RBasics-master/CC-RBasics-master/edidiv.csv")  
head(edidiv)                # Muestra las primeras filas.
##                      organisationName gridReference year         taxonName
## 1 Joint Nature Conservation Committee      NT265775 2000    Sterna hirundo
## 2 Joint Nature Conservation Committee      NT235775 2000    Sterna hirundo
## 3 Joint Nature Conservation Committee      NT235775 2000 Sterna paradisaea
## 4       British Trust for Ornithology          NT27 2000 Branta canadensis
## 5       British Trust for Ornithology          NT27 2000  Branta leucopsis
## 6     The Wildlife Information Centre         NT27S 2001     Turdus merula
##   taxonGroup
## 1       Bird
## 2       Bird
## 3       Bird
## 4       Bird
## 5       Bird
## 6       Bird
tail(edidiv)                # Muestra las ultimas filas.
##                            organisationName gridReference year
## 25679                    The Mammal Society      NT278745 2016
## 25680                    The Mammal Society      NT277724 2016
## 25681                    The Mammal Society      NT266728 2016
## 25682                    The Mammal Society      NT270728 2016
## 25683                    The Mammal Society      NT257762 2016
## 25684 People's Trust for Endangered Species        NT2372 2016
##                   taxonName taxonGroup
## 25679  Sciurus carolinensis     Mammal
## 25680   Capreolus capreolus     Mammal
## 25681  Sciurus carolinensis     Mammal
## 25682 Oryctolagus cuniculus     Mammal
## 25683         Vulpes vulpes     Mammal
## 25684   Erinaceus europaeus     Mammal
str(edidiv)                 # Indica si las variables son continuas, enteras, categóricas o caracteres.
## 'data.frame':    25684 obs. of  5 variables:
##  $ organisationName: Factor w/ 28 levels "BATS & The Millennium Link",..: 14 14 14 8 8 28 28 28 28 28 ...
##  $ gridReference   : Factor w/ 1938 levels "NT200701","NT200712",..: 1314 569 569 1412 1412 1671 1671 1671 1671 1671 ...
##  $ year            : int  2000 2000 2000 2000 2000 2001 2001 2001 2001 2001 ...
##  $ taxonName       : Factor w/ 1275 levels "Acarospora fuscata",..: 1126 1126 1127 192 193 1202 365 977 472 947 ...
##  $ taxonGroup      : Factor w/ 11 levels "Beetle","Bird",..: 2 2 2 2 2 2 2 2 2 2 ...
head(edidiv$taxonGroup)     # Muestra solo las primeras filas de esta columna
## [1] Bird Bird Bird Bird Bird Bird
## 11 Levels: Beetle Bird Butterfly Dragonfly Flowering.Plants ... Mollusc
class(edidiv$taxonGroup)    # Dice con qué tipo de variable estamos tratando: su carácter ahora, pero queremos que sea un factor
## [1] "factor"
edidiv$taxonGroup <- as.factor(edidiv$taxonGroup)

class(edidiv$taxonGroup) 
## [1] "factor"
# More exploration
dim(edidiv)                 # Muestra el numero de filas y Columnas
## [1] 25684     5
summary(edidiv)             # Da un resumen de los datos
##                                              organisationName gridReference  
##  Biological Records Centre                           :6744    NT2673 : 2741  
##  RSPB                                                :5809    NT2773 : 2031  
##  Butterfly Conservation                              :3000    NT2873 : 1247  
##  Scottish Wildlife Trust                             :2070    NT2570 : 1001  
##  Conchological Society of Great Britain &amp; Ireland:1998    NT27   :  888  
##  The Wildlife Information Centre                     :1860    NT2871 :  767  
##  (Other)                                             :4203    (Other):17009  
##       year                      taxonName                taxonGroup  
##  Min.   :2000   Maniola jurtina      : 1710   Butterfly       :9670  
##  1st Qu.:2006   Aphantopus hyperantus: 1468   Bird            :7366  
##  Median :2009   Turdus merula        : 1112   Flowering.Plants:2625  
##  Mean   :2009   Lycaena phlaeas      :  972   Mollusc         :2226  
##  3rd Qu.:2011   Aglais urticae       :  959   Hymenopteran    :1391  
##  Max.   :2016   Aglais io            :  720   Mammal          : 960  
##                 (Other)              :18743   (Other)         :1446
summary(edidiv$taxonGroup)  # Da un resumen de una variable particular
##           Beetle             Bird        Butterfly        Dragonfly 
##              426             7366             9670              421 
## Flowering.Plants           Fungus     Hymenopteran           Lichen 
##             2625              334             1391              140 
##        Liverwort           Mammal          Mollusc 
##              125              960             2226
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
Beetle <- filter(edidiv,taxonGroup=="Beetle")
Bird <- filter(edidiv, taxonGroup == "Bird")
Butterfly <- filter(edidiv, taxonGroup == "Butterfly")
Dragonfly <- filter(edidiv, taxonGroup == "Dragonfly")
Flowering.Plants <- filter(edidiv, taxonGroup == "Flowering.Plants")
Fungus <- filter(edidiv, taxonGroup == "Fungus")
Hymenopteran <- filter(edidiv, taxonGroup == "Hymenopteran")
Lichen <- filter(edidiv, taxonGroup == "Lichen")
Liverwort <- filter(edidiv,taxonGroup == "Liverwort")
Mammal <- filter(edidiv, taxonGroup == "Mammal")
Mollusc <- filter(edidiv, taxonGroup == "Mollusc")

a <- length(unique(Beetle$taxonName))
b <- length(unique(Bird$taxonName))
c <- length(unique(Dragonfly$taxonName))
d <- length(unique(Flowering.Plants$taxonName))
e <- length(unique(Fungus$taxonName))
f <- length(unique(Hymenopteran$taxonName))
g <- length(unique(Lichen$taxonName))
h <- length(unique(Liverwort$taxonName))
i <- length(unique(Mammal$taxonName))
j <- length(unique(Mollusc$taxonName))
K <- length(unique(Butterfly$taxonName))

biodiv <- c(a,b,c,d,e,f,g,h,i,j,K)
names(biodiv) <- c("Beetle",
                   "Bird",
                   "Butterfly",
                   "Dragonfly",
                   "Flowering.Plants",
                   "Fungus",
                   "Hymenopteran",
                   "Lichen",
                   "Liverwort",
                   "Mammal",
                   "Mollusc")


help(barplot)     
## starting httpd help server ...
##  done
help(par) 


png("barplot.png", width=1600, height=600)  
barplot(biodiv ,xlab="Taxa",ylab="Number of species", ylim=c(0,600), cex.names= 1.5, cex.axis=1.5, cex.lab=1.5)
dev.off()
## png 
##   2
barplot(biodiv)

taxa <- c("Beetle",
          "Bird",
          "Butterfly",
          "Dragonfly",
          "Flowering.Plants",
          "Fungus",
          "Hymenopteran",
          "Lichen",
          "Liverwort",
          "Mammal",
          "Mollusc")

taxa_f <- factor(taxa)
richness <- c(a,b,c,d,e,f,g,h,i,j,K)
biodata <- data.frame(taxa_f, richness)
write.csv(biodata, file="biodata.csv")  

png("barplot2.png", width=1600, height=600)
barplot(biodata$richness, names.arg=c("Beetle",
                                      "Bird",
                                      "Butterfly",
                                      "Dragonfly",
                                      "Flowering.Plants",
                                      "Fungus",
                                      "Hymenopteran",
                                      "Lichen",
                                      "Liverwort",
                                      "Mammal",
                                      "Mollusc"),
        xlab="Taxa", ylab="Number of species", ylim=c(0,600))
dev.off()
## png 
##   2