library(MASS)
library(tidyverse)
## ── Attaching packages ────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.2.1 ✓ purrr 0.3.3
## ✓ tibble 2.1.3 ✓ dplyr 0.8.3
## ✓ tidyr 1.0.2 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.4.0
## ── Conflicts ───────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x dplyr::select() masks MASS::select()
data(Boston)
summary(Boston)
## crim zn indus chas
## Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
## 1st Qu.: 0.08204 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
## Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
## Mean : 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
## 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
## Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000
## nox rm age dis
## Min. :0.3850 Min. :3.561 Min. : 2.90 Min. : 1.130
## 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100
## Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207
## Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795
## 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188
## Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127
## rad tax ptratio black
## Min. : 1.000 Min. :187.0 Min. :12.60 Min. : 0.32
## 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.:375.38
## Median : 5.000 Median :330.0 Median :19.05 Median :391.44
## Mean : 9.549 Mean :408.2 Mean :18.46 Mean :356.67
## 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.23
## Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
## lstat medv
## Min. : 1.73 Min. : 5.00
## 1st Qu.: 6.95 1st Qu.:17.02
## Median :11.36 Median :21.20
## Mean :12.65 Mean :22.53
## 3rd Qu.:16.95 3rd Qu.:25.00
## Max. :37.97 Max. :50.00
dim(Boston)
## [1] 506 14
##Sice of sprit
ceiling(506*.3)
## [1] 152
Boston$part<-rep(0, 506)
set.seed(1)
test<-sample(1:506, 152, replace=FALSE)
Boston$part[test]<-1
ggplot(Boston, aes(x=lstat, y=medv, color=as.factor(part)))+
geom_point()
mod10=lm(medv~poly(lstat, 10), data=Boston)
summary(mod10)
##
## Call:
## lm(formula = medv ~ poly(lstat, 10), data = Boston)
##
## Residuals:
## Min 1Q Median 3Q Max
## -14.5340 -3.0286 -0.7507 2.0437 26.4738
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.5328 0.2311 97.488 < 2e-16 ***
## poly(lstat, 10)1 -152.4595 5.1993 -29.323 < 2e-16 ***
## poly(lstat, 10)2 64.2272 5.1993 12.353 < 2e-16 ***
## poly(lstat, 10)3 -27.0511 5.1993 -5.203 2.88e-07 ***
## poly(lstat, 10)4 25.4517 5.1993 4.895 1.33e-06 ***
## poly(lstat, 10)5 -19.2524 5.1993 -3.703 0.000237 ***
## poly(lstat, 10)6 6.5088 5.1993 1.252 0.211211
## poly(lstat, 10)7 1.9416 5.1993 0.373 0.708977
## poly(lstat, 10)8 -6.7299 5.1993 -1.294 0.196133
## poly(lstat, 10)9 8.4168 5.1993 1.619 0.106116
## poly(lstat, 10)10 -7.3351 5.1993 -1.411 0.158930
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.199 on 495 degrees of freedom
## Multiple R-squared: 0.6867, Adjusted R-squared: 0.6804
## F-statistic: 108.5 on 10 and 495 DF, p-value: < 2.2e-16
ggplot(Boston, aes(x=lstat, y=medv, color=as.factor(part)))+
geom_point()+
facet_grid(.~part)
traindf<-Boston%>%
filter(part==0)
testdf<-Boston%>%
filter(part==1)
trainLM<-lm(medv~lstat, traindf)
anova(trainLM)
## Analysis of Variance Table
##
## Response: medv
## Df Sum Sq Mean Sq F value Pr(>F)
## lstat 1 16434 16433.6 424.12 < 2.2e-16 ***
## Residuals 352 13639 38.7
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
testFit<-predict(trainLM, testdf)
testRSS<-sum((testdf$medv-testFit)^2)
testRSS
## [1] 5848.702
testMSE<-mean((testdf$medv-testFit)^2)
testMSE
## [1] 38.4783
train<-sample(506, 354)
degreePoly<-10
polyMSE<-matrix(nrow=degreePoly, ncol=2)
colnames(polyMSE)<-c("degree", "MSE")
for(i in 1:degreePoly){
polyMSE[i,1]<-i
this.fit<-lm(medv~poly(lstat,i), data=Boston, subset=train)
polyMSE[i,2]<-mean((Boston$medv-predict(this.fit, Boston))[-train]^2)
}
polyDF<-as.data.frame(polyMSE)
head(polyDF)
## degree MSE
## 1 1 49.75812
## 2 2 37.93550
## 3 3 38.24952
## 4 4 36.80820
## 5 5 36.21784
## 6 6 36.11516
ggplot(data=polyDF, aes(x=degree, y=MSE))+
geom_point()+
geom_line()
degreePoly<-10
splits<-5
splitMat<-matrix(nrow=degreePoly*splits, ncol=3)
colnames(splitMat)<-c("run","MSE", "degree")
for(i in 1:splits){
a=(i-1)*degreePoly+1
b=i*degreePoly
set.seed(i*10)
splitMat[a:b,1]<-i
train<-sample(506, 354)
for(j in 1:degreePoly){
c=a+(j-1)
this.fit<-lm(medv~poly(lstat,j), data=Boston, subset=train)
splitMat[c,2]<-mean((Boston$medv-predict(this.fit, Boston))[-train]^2)
splitMat[c,3]<-j
}
}
splitDF<-as.data.frame(splitMat)
head(splitDF)
## run MSE degree
## 1 1 38.56181 1
## 2 1 29.22841 2
## 3 1 26.82882 3
## 4 1 27.18187 4
## 5 1 27.54487 5
## 6 1 28.41189 6
ggplot(data=splitDF, aes(x=degree, y=MSE, color=as.factor(run)))+
geom_point()+
geom_line()