dr.sc. Luka Šikić
12 ožujak, 2020
Podatkovni skup o preživjelim/umrlim pticama uslijed vremenske nepogode.
Korelacija između pet mjera veličine preživjelih/umrlih ptica.
Svojstvene vrijednosti i vektori za podatke o preživjelim/umrlim pticama.
PCA za podatke o preživjelim/umrlim pticama.
PCA vizualizacija o podatkovnom skupu o preživjelim pticama. Crne točkice označavaju umrle ptice.
Podatkovni skup o strukturi zaposlenosti u europskim zemljama.
Korelacijska matrica za podatke o strukturi zaposlenosti u europskim zemljama.
PCA vizualizacija podataka o strukturi zaposlenosti u europskim zemljama.
PCA opterećenja na podatcima razvoja osobnosti kod djece.
Korelacija između postignuća na različitim predmetima u srednjoj školi.
PCA za podatke o postignuću na različitim predmetima u srednjoj školi.
Vizualizacija dvije dominantne PCA komponente na podatcima o postignuću na različitim predmetima u srednjoj školi.
Opterećenja(loadings) za prve dvije PCA komponente na podatcima o postignuću na različitim predmetima u srednjoj školi.
Opis varijabli za podatke o sektorskim udjelima zaposlenosti u europskim zemljama.
Korelacijska matrica za podatke o sektorskim udjelima zaposlenosti u europskim zemljama.
Varijanca pripadajućih PCA komponenti za podatke o sektorskim udjelima zaposlenosti u europskim zemljama.
PCA opterećenja komponenti za podatke o sektorskim udjelima zaposlenosti u europskim zemljama.
Scree grafikon za PCA analizu na podatcima o sektorskim udjelima zaposlenosti u europskim zemljama.
Vizualizacija dvije glavne PCA komponente prema sektorima analize sektorskih udjela zaposlenosti u europskim zemljama.
Vizualizacija dvije glavne PCA komponente prema zemljama analize sektorskih udjela zaposlenosti u europskim zemljama.
Varijable u podatkovnom skupu o društvenoj mobilnosti u UK.
Korelacijska matricsa varijabli u podatkovnom skupu o društvenoj mobilnosti u UK.
PCA opterećenja na podatkovnom skupu o društvenoj mobilnosti u UK.
Korelacijska matrica podataka o preferencijama TV programa u UK.
Scree grafikon za PCA na podatcima o preferencijama TV programa u UK.
Grafički prikaz PCA komponenti na podatcima o preferencijama TV programa u UK.
## Murder Assault UrbanPop Rape
## Alabama 13.2 236 58 21.2
## Alaska 10.0 263 48 44.5
## Arizona 8.1 294 80 31.0
## Arkansas 8.8 190 50 19.5
## California 9.0 276 91 40.6
## Colorado 7.9 204 78 38.7
## Connecticut 3.3 110 77 11.1
## Delaware 5.9 238 72 15.8
## Florida 15.4 335 80 31.9
## Georgia 17.4 211 60 25.8
## Murder Assault UrbanPop Rape
## 18.97047 6945.16571 209.51878 87.72916
skalirano_dta <- apply(USArrests,2, scale) # Standardiziraj varijable
str(skalirano_dta) # Pogledaj novi objekt## num [1:50, 1:4] 1.2426 0.5079 0.0716 0.2323 0.2783 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"
## Murder Assault UrbanPop Rape
## [1,] 1.24256408 0.7828393 -0.5209066 -0.003416473
## [2,] 0.50786248 1.1068225 -1.2117642 2.484202941
## [3,] 0.07163341 1.4788032 0.9989801 1.042878388
## [4,] 0.23234938 0.2308680 -1.0735927 -0.184916602
## [5,] 0.27826823 1.2628144 1.7589234 2.067820292
## [6,] 0.02571456 0.3988593 0.8608085 1.864967207
## [7,] -1.03041900 -0.7290821 0.7917228 -1.081740768
## [8,] -0.43347395 0.8068381 0.4462940 -0.579946294
## [9,] 1.74767144 1.9707777 0.9989801 1.138966691
## [10,] 2.20685994 0.4828549 -0.3827351 0.487701523
# Za izračun glavnih komponenti:
## 1. izračunaj kovarijančnu matricu
kov_dta <- cov(skalirano_dta)
## 2. Izračunaj svojstvene vrijednosti km
eig_kov_dta <- eigen(kov_dta)
str(eig_kov_dta) # Pogledaj objekt## List of 2
## $ values : num [1:4] 2.48 0.99 0.357 0.173
## $ vectors: num [1:4, 1:4] -0.536 -0.583 -0.278 -0.543 0.418 ...
## - attr(*, "class")= chr "eigen"
## 3. Spremi opterećenja u novi objekt
opt <- eig_kov_dta$vectors[,1:2]
## 4. Okreni smjer svojstvenih vektora
opt <- -opt
## 5. Pripiši nazive
row.names(opt) <- c("Murder", "Assault", "UrbanPop", "Rape")
colnames(opt) <- c("PC1", "PC2")
head(opt) # Pogledaj objekt## PC1 PC2
## Murder 0.5358995 -0.4181809
## Assault 0.5831836 -0.1879856
## UrbanPop 0.2781909 0.8728062
## Rape 0.5434321 0.1673186
## 6. Izračunaj koeficijente glavnih komponenti
PC1 <- as.matrix(skalirano_dta) %*% opt[,1]
PC2 <- as.matrix(skalirano_dta) %*% opt[,2]
## 7. Poveži u podatkovni okvir
PC <- data.frame(GEO = row.names(USArrests), PC1, PC2)
head(PC)## GEO PC1 PC2
## 1 Alabama 0.9756604 -1.1220012
## 2 Alaska 1.9305379 -1.0624269
## 3 Arizona 1.7454429 0.7384595
## 4 Arkansas -0.1399989 -1.1085423
## 5 California 2.4986128 1.5274267
## 6 Colorado 1.4993407 0.9776297
# Prikaži prve dvije PC komponente grafički
ggplot2:: ggplot(PC, aes(PC1,PC2)) +
modelr:: geom_ref_line(h=0) +
modelr:: geom_ref_line(v= 0) +
geom_text(aes(label = GEO), size = 4) +
xlab("PC1") +
ylab("PC2") +
ggtitle("Prve dvije glavne komponente za USArrests podatkovni okvir")# Izračunaj varijabilnost vezanu uz glavnbe komponente
PCvar <- eig_kov_dta$values / sum(eig_kov_dta$values)
print(round(PCvar,2)) # Prikaži podatke## [1] 0.62 0.25 0.09 0.04
# Prikaži grafički
## Scree
PVEplot <- qplot(c(1:4), PCvar) +
geom_line() +
xlab("PC") +
ylab("PVE") +
ggtitle("Scree") +
ylim(0, 1)
## CumSum scree
cumPVE <- qplot(c(1:4), cumsum(PCvar)) +
geom_line() +
xlab("PC") +
ylab(NULL) +
ggtitle("Cumulative Sum Scree") +
ylim(0,1)
PVEplot + cumPVE## PROVEDI PROCEDURU PUTEM FORMULA ##
PCA_fun <- prcomp(USArrests, scale = T)
names(PCA_fun) # Pregledaj objekt## [1] "sdev" "rotation" "center" "scale" "x"
## Murder Assault UrbanPop Rape
## 7.788 170.760 65.540 21.232
## Murder Assault UrbanPop Rape
## 4.355510 83.337661 14.474763 9.366385
## PC1 PC2 PC3 PC4
## Murder -0.5358995 0.4181809 -0.3412327 0.64922780
## Assault -0.5831836 0.1879856 -0.2681484 -0.74340748
## UrbanPop -0.2781909 -0.8728062 -0.3780158 0.13387773
## Rape -0.5434321 -0.1673186 0.8177779 0.08902432
## PC1 PC2 PC3 PC4
## Murder 0.5358995 -0.4181809 0.3412327 -0.64922780
## Assault 0.5831836 -0.1879856 0.2681484 0.74340748
## UrbanPop 0.2781909 0.8728062 0.3780158 -0.13387773
## Rape 0.5434321 0.1673186 -0.8177779 -0.08902432
## PC1 PC2 PC3 PC4
## Alabama 0.9756604 -1.1220012 0.43980366 -0.154696581
## Alaska 1.9305379 -1.0624269 -2.01950027 0.434175454
## Arizona 1.7454429 0.7384595 -0.05423025 0.826264240
## Arkansas -0.1399989 -1.1085423 -0.11342217 0.180973554
## California 2.4986128 1.5274267 -0.59254100 0.338559240
## Colorado 1.4993407 0.9776297 -1.08400162 -0.001450164
# Izračunaj varijancu po glavnim komponentama
VE <- PCA_fun$sdev^2
PCv <- VE / sum(VE)
print(round(PCv, 2))## [1] 0.62 0.25 0.09 0.04
## X100m Long.jump Shot.put High.jump X400m X110m.hurdle Discus
## SEBRLE 11.04 7.58 14.83 2.07 49.81 14.69 43.75
## CLAY 10.76 7.40 14.26 1.86 49.37 14.05 50.72
## BERNARD 11.02 7.23 14.25 1.92 48.93 14.99 40.87
## YURKOV 11.34 7.09 15.19 2.10 50.42 15.31 46.26
## ZSIVOCZKY 11.13 7.30 13.48 2.01 48.62 14.17 45.67
## McMULLEN 10.83 7.31 13.76 2.13 49.91 14.38 44.41
## MARTINEAU 11.64 6.81 14.57 1.95 50.14 14.93 47.60
## HERNU 11.37 7.56 14.41 1.86 51.10 15.06 44.99
## BARRAS 11.33 6.97 14.09 1.95 49.48 14.48 42.10
## NOOL 11.33 7.27 12.68 1.98 49.20 15.29 37.92
## Pole.vault Javeline X1500m Rank Points Competition
## SEBRLE 5.02 63.19 291.7 1 8217 Decastar
## CLAY 4.92 60.15 301.5 2 8122 Decastar
## BERNARD 5.32 62.77 280.1 4 8067 Decastar
## YURKOV 4.72 63.44 276.4 5 8036 Decastar
## ZSIVOCZKY 4.42 55.37 268.0 7 8004 Decastar
## McMULLEN 4.42 56.37 285.1 8 7995 Decastar
## MARTINEAU 4.92 52.33 262.1 9 7802 Decastar
## HERNU 4.82 57.19 285.1 10 7733 Decastar
## BARRAS 4.72 55.40 282.0 11 7708 Decastar
## NOOL 4.62 57.44 266.6 12 7651 Decastar
## 'data.frame': 27 obs. of 13 variables:
## $ X100m : num 11 10.8 11 11.3 11.1 ...
## $ Long.jump : num 7.58 7.4 7.23 7.09 7.3 7.31 6.81 7.56 6.97 7.27 ...
## $ Shot.put : num 14.8 14.3 14.2 15.2 13.5 ...
## $ High.jump : num 2.07 1.86 1.92 2.1 2.01 2.13 1.95 1.86 1.95 1.98 ...
## $ X400m : num 49.8 49.4 48.9 50.4 48.6 ...
## $ X110m.hurdle: num 14.7 14.1 15 15.3 14.2 ...
## $ Discus : num 43.8 50.7 40.9 46.3 45.7 ...
## $ Pole.vault : num 5.02 4.92 5.32 4.72 4.42 4.42 4.92 4.82 4.72 4.62 ...
## $ Javeline : num 63.2 60.1 62.8 63.4 55.4 ...
## $ X1500m : num 292 302 280 276 268 ...
## $ Rank : int 1 2 4 5 7 8 9 10 11 12 ...
## $ Points : int 8217 8122 8067 8036 8004 7995 7802 7733 7708 7651 ...
## $ Competition : Factor w/ 2 levels "Decastar","OlympicG": 1 1 1 1 1 1 1 1 1 1 ...
# Definiraj podatke za analizu
decathlon2.active <- decathlon2[1:23, 1:10]
head(decathlon2.active[, 1:6], 10)## X100m Long.jump Shot.put High.jump X400m X110m.hurdle
## SEBRLE 11.04 7.58 14.83 2.07 49.81 14.69
## CLAY 10.76 7.40 14.26 1.86 49.37 14.05
## BERNARD 11.02 7.23 14.25 1.92 48.93 14.99
## YURKOV 11.34 7.09 15.19 2.10 50.42 15.31
## ZSIVOCZKY 11.13 7.30 13.48 2.01 48.62 14.17
## McMULLEN 10.83 7.31 13.76 2.13 49.91 14.38
## MARTINEAU 11.64 6.81 14.57 1.95 50.14 14.93
## HERNU 11.37 7.56 14.41 1.86 51.10 15.06
## BARRAS 11.33 6.97 14.09 1.95 49.48 14.48
## NOOL 11.33 7.27 12.68 1.98 49.20 15.29
## **Results for the Principal Component Analysis (PCA)**
## The analysis was performed on 23 individuals, described by 10 variables
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$var" "results for the variables"
## 3 "$var$coord" "coord. for the variables"
## 4 "$var$cor" "correlations variables - dimensions"
## 5 "$var$cos2" "cos2 for the variables"
## 6 "$var$contrib" "contributions of the variables"
## 7 "$ind" "results for the individuals"
## 8 "$ind$coord" "coord. for the individuals"
## 9 "$ind$cos2" "cos2 for the individuals"
## 10 "$ind$contrib" "contributions of the individuals"
## 11 "$call" "summary statistics"
## 12 "$call$centre" "mean of the variables"
## 13 "$call$ecart.type" "standard error of the variables"
## 14 "$call$row.w" "weights for the individuals"
## 15 "$call$col.w" "weights for the variables"
# Izvuci svojstvene vrijednosti
svojstvene_vrijednosti <- get_eigenvalue(procjena_PCA)
print(svojstvene_vrijednosti)## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 4.1242133 41.242133 41.24213
## Dim.2 1.8385309 18.385309 59.62744
## Dim.3 1.2391403 12.391403 72.01885
## Dim.4 0.8194402 8.194402 80.21325
## Dim.5 0.7015528 7.015528 87.22878
## Dim.6 0.4228828 4.228828 91.45760
## Dim.7 0.3025817 3.025817 94.48342
## Dim.8 0.2744700 2.744700 97.22812
## Dim.9 0.1552169 1.552169 98.78029
## Dim.10 0.1219710 1.219710 100.00000
## Principal Component Analysis Results for variables
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the variables"
## 2 "$cor" "Correlations between variables and dimensions"
## 3 "$cos2" "Cos2 for the variables"
## 4 "$contrib" "contributions of the variables"
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m -0.8506257 -0.17939806 0.3015564 0.03357320 -0.1944440
## Long.jump 0.7941806 0.28085695 -0.1905465 -0.11538956 0.2331567
## Shot.put 0.7339127 0.08540412 0.5175978 0.12846837 -0.2488129
## High.jump 0.6100840 -0.46521415 0.3300852 0.14455012 0.4027002
## X400m -0.7016034 0.29017826 0.2835329 0.43082552 0.1039085
## X110m.hurdle -0.7641252 -0.02474081 0.4488873 -0.01689589 0.2242200
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m 0.7235641 0.0321836641 0.09093628 0.0011271597 0.03780845
## Long.jump 0.6307229 0.0788806285 0.03630798 0.0133147506 0.05436203
## Shot.put 0.5386279 0.0072938636 0.26790749 0.0165041211 0.06190783
## High.jump 0.3722025 0.2164242070 0.10895622 0.0208947375 0.16216747
## X400m 0.4922473 0.0842034209 0.08039091 0.1856106269 0.01079698
## X110m.hurdle 0.5838873 0.0006121077 0.20149984 0.0002854712 0.05027463
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m 17.544293 1.7505098 7.338659 0.13755240 5.389252
## Long.jump 15.293168 4.2904162 2.930094 1.62485936 7.748815
## Shot.put 13.060137 0.3967224 21.620432 2.01407269 8.824401
## High.jump 9.024811 11.7715838 8.792888 2.54987951 23.115504
## X400m 11.935544 4.5799296 6.487636 22.65090599 1.539012
## X110m.hurdle 14.157544 0.0332933 16.261261 0.03483735 7.166193
# Prikaži kvalitetu reprezentacije varijabli u faktorskom prostoru
corrplot::corrplot(vars$cos2, is.corr = F)# Prikaži kvalitetu reprezentacije varijabli u PC prostoru
corrplot::corrplot(vars$contrib, is.corr = F)#fviz_contrib(procjena_PCA, choice = "var", axses = 2, top = 10)
#fviz_contrib(procjena_PCA, choice = "var", axses = 1:2, top = 10)
# Grupiranje na osnovi Kmeans algoritma
set.seed(123)
group_km <- kmeans(vars$coord, centers = 3, nstart = 25)
group <- as.factor(group_km$cluster)
fviz_pca_var(procjena_PCA, col.var = group,
palette = c("#0073C2FF", "#EFC000FF", "#868686FF"),
legend.title = "cluster")## OPIS DIMENZIJA ##
opis_PCA <- dimdesc(procjena_PCA, axes = c(1,2), proba = 0.05)
head(opis_PCA,10)## $Dim.1
## $quanti
## correlation p.value
## Long.jump 0.7941806 6.059893e-06
## Discus 0.7432090 4.842563e-05
## Shot.put 0.7339127 6.723102e-05
## High.jump 0.6100840 1.993677e-03
## Javeline 0.4282266 4.149192e-02
## X400m -0.7016034 1.910387e-04
## X110m.hurdle -0.7641252 2.195812e-05
## X100m -0.8506257 2.727129e-07
##
## attr(,"class")
## [1] "condes" "list "
##
## $Dim.2
## $quanti
## correlation p.value
## Pole.vault 0.8074511 3.205016e-06
## X1500m 0.7844802 9.384747e-06
## High.jump -0.4652142 2.529390e-02
##
## attr(,"class")
## [1] "condes" "list "
##
## $call
## $call$num.var
## [1] 1
##
## $call$proba
## [1] 0.05
##
## $call$weights
## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##
## $call$X
## Dim.1 X100m Long.jump Shot.put High.jump X400m X110m.hurdle
## SEBRLE 0.1955047 11.04 7.58 14.83 2.07 49.81 14.69
## CLAY 0.8078795 10.76 7.40 14.26 1.86 49.37 14.05
## BERNARD -1.3591340 11.02 7.23 14.25 1.92 48.93 14.99
## YURKOV -0.8889532 11.34 7.09 15.19 2.10 50.42 15.31
## ZSIVOCZKY -0.1081216 11.13 7.30 13.48 2.01 48.62 14.17
## McMULLEN 0.1212195 10.83 7.31 13.76 2.13 49.91 14.38
## MARTINEAU -2.4461206 11.64 6.81 14.57 1.95 50.14 14.93
## HERNU -1.9335505 11.37 7.56 14.41 1.86 51.10 15.06
## BARRAS -1.8143379 11.33 6.97 14.09 1.95 49.48 14.48
## NOOL -2.8394182 11.33 7.27 12.68 1.98 49.20 15.29
## BOURGUIGNON -4.5129309 11.36 6.80 13.46 1.86 51.16 15.67
## Sebrle 3.5290188 10.85 7.84 16.36 2.12 48.36 14.05
## Clay 3.3907555 10.44 7.96 15.23 2.06 49.19 14.13
## Karpov 4.1618361 10.50 7.81 15.93 2.09 46.81 13.97
## Macey 1.8900060 10.89 7.47 15.73 2.15 48.97 14.56
## Warners 1.4185318 10.62 7.74 14.48 1.97 47.97 14.01
## Zsivoczky 0.4821513 10.91 7.14 15.31 2.12 49.40 14.95
## Hernu 0.2825218 10.97 7.19 14.65 2.03 48.73 14.25
## Bernard 1.3979877 10.69 7.48 14.80 2.12 49.13 14.17
## Schwarzl -0.7262410 10.98 7.49 14.01 1.94 49.76 14.25
## Pogorelov -0.2191699 10.95 7.31 15.10 2.06 50.79 14.21
## Schoenbeck -0.5064487 10.90 7.30 14.77 1.88 50.30 14.34
## Barras -0.3229862 11.14 6.99 14.91 1.94 49.41 14.37
## Discus Pole.vault Javeline X1500m
## SEBRLE 43.75 5.02 63.19 291.70
## CLAY 50.72 4.92 60.15 301.50
## BERNARD 40.87 5.32 62.77 280.10
## YURKOV 46.26 4.72 63.44 276.40
## ZSIVOCZKY 45.67 4.42 55.37 268.00
## McMULLEN 44.41 4.42 56.37 285.10
## MARTINEAU 47.60 4.92 52.33 262.10
## HERNU 44.99 4.82 57.19 285.10
## BARRAS 42.10 4.72 55.40 282.00
## NOOL 37.92 4.62 57.44 266.60
## BOURGUIGNON 40.49 5.02 54.68 291.70
## Sebrle 48.72 5.00 70.52 280.01
## Clay 50.11 4.90 69.71 282.00
## Karpov 51.65 4.60 55.54 278.11
## Macey 48.34 4.40 58.46 265.42
## Warners 43.73 4.90 55.39 278.05
## Zsivoczky 45.62 4.70 63.45 269.54
## Hernu 44.72 4.80 57.76 264.35
## Bernard 44.75 4.40 55.27 276.31
## Schwarzl 42.43 5.10 56.32 273.56
## Pogorelov 44.60 5.00 53.45 287.63
## Schoenbeck 44.41 5.00 60.89 278.82
## Barras 44.83 4.60 64.55 267.09
## $quanti
## correlation p.value
## Long.jump 0.7941806 6.059893e-06
## Discus 0.7432090 4.842563e-05
## Shot.put 0.7339127 6.723102e-05
## High.jump 0.6100840 1.993677e-03
## Javeline 0.4282266 4.149192e-02
## X400m -0.7016034 1.910387e-04
## X110m.hurdle -0.7641252 2.195812e-05
## X100m -0.8506257 2.727129e-07
##
## attr(,"class")
## [1] "condes" "list "
## $quanti
## correlation p.value
## Pole.vault 0.8074511 3.205016e-06
## X1500m 0.7844802 9.384747e-06
## High.jump -0.4652142 2.529390e-02
##
## attr(,"class")
## [1] "condes" "list "
## INDIVIDUALNI ELEMENTI ##
inds <- get_pca_ind(procjena_PCA) # Stvori IE objekt
print(inds) # Pregledaj## Principal Component Analysis Results for individuals
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the individuals"
## 2 "$cos2" "Cos2 for the individuals"
## 3 "$contrib" "contributions of the individuals"
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## SEBRLE 0.1955047 1.5890567 0.6424912 0.08389652 1.16829387
## CLAY 0.8078795 2.4748137 -1.3873827 1.29838232 -0.82498206
## BERNARD -1.3591340 1.6480950 0.2005584 -1.96409420 0.08419345
## YURKOV -0.8889532 -0.4426067 2.5295843 0.71290837 0.40782264
## ZSIVOCZKY -0.1081216 -2.0688377 -1.3342591 -0.10152796 -0.20145217
## McMULLEN 0.1212195 -1.0139102 -0.8625170 1.34164291 1.62151286
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## SEBRLE 0.007530179 0.49747323 0.081325232 0.001386688 0.2689026575
## CLAY 0.048701249 0.45701660 0.143628117 0.125791741 0.0507850580
## BERNARD 0.197199804 0.28996555 0.004294015 0.411819183 0.0007567259
## YURKOV 0.096109800 0.02382571 0.778230322 0.061812637 0.0202279796
## ZSIVOCZKY 0.001574385 0.57641944 0.239754152 0.001388216 0.0054654972
## McMULLEN 0.002175437 0.15219499 0.110137872 0.266486530 0.3892621478
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## SEBRLE 0.04029447 5.9714533 1.4483919 0.03734589 8.45894063
## CLAY 0.68805664 14.4839248 6.7537381 8.94458283 4.21794385
## BERNARD 1.94740183 6.4234107 0.1411345 20.46819433 0.04393073
## YURKOV 0.83308415 0.4632733 22.4517396 2.69663605 1.03075263
## ZSIVOCZKY 0.01232413 10.1217143 6.2464325 0.05469230 0.25151025
## McMULLEN 0.01549089 2.4310854 2.6102794 9.55055888 16.29493304
# Prikaži doprinos IE
fviz_pca_ind(procjena_PCA, col.ind = "cos2",
gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE)## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
# Provedi PCA
iris_PCA <- PCA(iris[,-5], graph = F)
# Vizualizacija 1
fviz_pca_ind(iris_PCA,
geom.ind = "point",
col.ind = iris$Species,
addEllipses = T,
legend.title = "Grupa",
palette = c("#00AFBB", "#E7B800", "#FC4E07"))# Vizualizacija 2
fviz_pca_biplot(iris_PCA,
geom.ind = "point",
col.ind = iris$Species,
addEllipses = T,
legend.title = "Grupa",
palette = "jco",
col.var = "black",
label = "var",
repel = T)