The data considered here is a dataset which has five colors cloths and their reaction to cooling and heating in every 10 minutes. Below are the variables description in the data
The dataset is placed in a csv file in the github repository and loaded here using read.csv function. kable library is used to display data tables.
# get the github URL from github
theURL <- "https://raw.githubusercontent.com/amit-kapoor/data607/master/week6/hcdata.csv"
# read the data from csv
tempreact_df <- read.csv(theURL)
# show intial rows through head
kable(head(tempreact_df), align = "l")
color | minute.0 | minute.10 | minute.20 | minute.30 | minute.40 | minute.50 | minute.60 | phase |
---|---|---|---|---|---|---|---|---|
white | 78 | 81 | 83 | 88 | 93 | 96 | 98 | heating |
red | 78 | 82 | 90 | 93 | 98 | 106 | 109 | heating |
pink | 78 | 82 | 84 | 90 | 96 | 99 | 102 | heating |
black | 78 | 88 | 92 | 98 | 108 | 116 | 121 | heating |
green | 78 | 81 | 85 | 91 | 95 | 102 | 105 | heating |
white | 98 | 96 | 93 | 80 | 78 | 78 | 78 | cooling |
Approach: My goal is to make data appear in a way which would be easy for further analysis. Here are the steps being performed.
# rename columns
tempreact_df <- tempreact_df %>%
rename("temp_initial"=minute.0) %>%
rename("temp_after_10"=minute.10) %>%
rename("temp_after_20"=minute.20) %>%
rename("temp_after_30"=minute.30) %>%
rename("temp_after_40"=minute.40) %>%
rename("temp_after_50"=minute.50) %>%
rename("temp_after_60"=minute.60)
# show intial rows through head
kable(head(tempreact_df), align = "l")
color | temp_initial | temp_after_10 | temp_after_20 | temp_after_30 | temp_after_40 | temp_after_50 | temp_after_60 | phase |
---|---|---|---|---|---|---|---|---|
white | 78 | 81 | 83 | 88 | 93 | 96 | 98 | heating |
red | 78 | 82 | 90 | 93 | 98 | 106 | 109 | heating |
pink | 78 | 82 | 84 | 90 | 96 | 99 | 102 | heating |
black | 78 | 88 | 92 | 98 | 108 | 116 | 121 | heating |
green | 78 | 81 | 85 | 91 | 95 | 102 | 105 | heating |
white | 98 | 96 | 93 | 80 | 78 | 78 | 78 | cooling |
cooling_phasedf <- filter(tempreact_df, tempreact_df$phase == "cooling")
kable(cooling_phasedf)
color | temp_initial | temp_after_10 | temp_after_20 | temp_after_30 | temp_after_40 | temp_after_50 | temp_after_60 | phase |
---|---|---|---|---|---|---|---|---|
white | 98 | 96 | 93 | 80 | 78 | 78 | 78 | cooling |
red | 109 | 106 | 95 | 87 | 82 | 80 | 78 | cooling |
pink | 102 | 96 | 90 | 83 | 80 | 78 | 78 | cooling |
black | 121 | 108 | 98 | 90 | 84 | 79 | 78 | cooling |
green | 105 | 94 | 90 | 82 | 80 | 78 | 78 | cooling |
#Change from Wide to long
cooling_long_df <- gather(cooling_phasedf, Temperature, Value, "temp_initial":"temp_after_60")
cooling_long_df
## color phase Temperature Value
## 1 white cooling temp_initial 98
## 2 red cooling temp_initial 109
## 3 pink cooling temp_initial 102
## 4 black cooling temp_initial 121
## 5 green cooling temp_initial 105
## 6 white cooling temp_after_10 96
## 7 red cooling temp_after_10 106
## 8 pink cooling temp_after_10 96
## 9 black cooling temp_after_10 108
## 10 green cooling temp_after_10 94
## 11 white cooling temp_after_20 93
## 12 red cooling temp_after_20 95
## 13 pink cooling temp_after_20 90
## 14 black cooling temp_after_20 98
## 15 green cooling temp_after_20 90
## 16 white cooling temp_after_30 80
## 17 red cooling temp_after_30 87
## 18 pink cooling temp_after_30 83
## 19 black cooling temp_after_30 90
## 20 green cooling temp_after_30 82
## 21 white cooling temp_after_40 78
## 22 red cooling temp_after_40 82
## 23 pink cooling temp_after_40 80
## 24 black cooling temp_after_40 84
## 25 green cooling temp_after_40 80
## 26 white cooling temp_after_50 78
## 27 red cooling temp_after_50 80
## 28 pink cooling temp_after_50 78
## 29 black cooling temp_after_50 79
## 30 green cooling temp_after_50 78
## 31 white cooling temp_after_60 78
## 32 red cooling temp_after_60 78
## 33 pink cooling temp_after_60 78
## 34 black cooling temp_after_60 78
## 35 green cooling temp_after_60 78
heating_phasedf <- filter(tempreact_df, tempreact_df$phase == "heating")
kable(heating_phasedf)
color | temp_initial | temp_after_10 | temp_after_20 | temp_after_30 | temp_after_40 | temp_after_50 | temp_after_60 | phase |
---|---|---|---|---|---|---|---|---|
white | 78 | 81 | 83 | 88 | 93 | 96 | 98 | heating |
red | 78 | 82 | 90 | 93 | 98 | 106 | 109 | heating |
pink | 78 | 82 | 84 | 90 | 96 | 99 | 102 | heating |
black | 78 | 88 | 92 | 98 | 108 | 116 | 121 | heating |
green | 78 | 81 | 85 | 91 | 95 | 102 | 105 | heating |
#Change from Wide to long
heating_long_df <- gather(heating_phasedf, Temperature, Value, "temp_initial":"temp_after_60")
heating_long_df
## color phase Temperature Value
## 1 white heating temp_initial 78
## 2 red heating temp_initial 78
## 3 pink heating temp_initial 78
## 4 black heating temp_initial 78
## 5 green heating temp_initial 78
## 6 white heating temp_after_10 81
## 7 red heating temp_after_10 82
## 8 pink heating temp_after_10 82
## 9 black heating temp_after_10 88
## 10 green heating temp_after_10 81
## 11 white heating temp_after_20 83
## 12 red heating temp_after_20 90
## 13 pink heating temp_after_20 84
## 14 black heating temp_after_20 92
## 15 green heating temp_after_20 85
## 16 white heating temp_after_30 88
## 17 red heating temp_after_30 93
## 18 pink heating temp_after_30 90
## 19 black heating temp_after_30 98
## 20 green heating temp_after_30 91
## 21 white heating temp_after_40 93
## 22 red heating temp_after_40 98
## 23 pink heating temp_after_40 96
## 24 black heating temp_after_40 108
## 25 green heating temp_after_40 95
## 26 white heating temp_after_50 96
## 27 red heating temp_after_50 106
## 28 pink heating temp_after_50 99
## 29 black heating temp_after_50 116
## 30 green heating temp_after_50 102
## 31 white heating temp_after_60 98
## 32 red heating temp_after_60 109
## 33 pink heating temp_after_60 102
## 34 black heating temp_after_60 121
## 35 green heating temp_after_60 105
For data analysis I used ggplot, geom_point, geom_line methods from ggplot2 library. I plotted the color on x-axis and temperature on y-axis. I created 2 graphs below to show the cooling and heating effects for different color in data.
cooling_phasedf %>% ggplot(aes(x=cooling_phasedf$color)) + scale_x_discrete(limits=cooling_phasedf$color) +
geom_point(aes(y=cooling_phasedf$temp_initial , group=1)) + geom_line(aes(y=cooling_phasedf$temp_initial, group=1, col="Intial Temp"), size=1) +
geom_point(aes(y=cooling_phasedf$temp_after_10, group=1)) + geom_line(aes(y=cooling_phasedf$temp_after_10, group=1, col="Temp after 10"), size=1) +
geom_point(aes(y=cooling_phasedf$temp_after_20 , group=1)) + geom_line(aes(y=cooling_phasedf$temp_after_20, group=1, col="Temp after 20"), size=1) +
geom_point(aes(y=cooling_phasedf$temp_after_30, group=1)) + geom_line(aes(y=cooling_phasedf$temp_after_30, group=1, col="Temp after 30"), size=1) +
geom_point(aes(y=cooling_phasedf$temp_after_40, group=1)) + geom_line(aes(y=cooling_phasedf$temp_after_40, group=1, col="Temp after 40"), size=1) +
geom_point(aes(y=cooling_phasedf$temp_after_50, group=1)) + geom_line(aes(y=cooling_phasedf$temp_after_50, group=1, col="Temp after 50"), size=1) +
geom_point(aes(y=cooling_phasedf$temp_after_60, group=1)) + geom_line(aes(y=cooling_phasedf$temp_after_60, group=1, col="Temp after 60"), size=1) +
labs(title="Cooling Temperature Versus Color", x="Color", y="Degrees in Farenheit", colour="") +
scale_colour_manual(values = c("orange", "grey" , "blue" , "green", "cyan" , "black" , "red"))
heating_phasedf %>% ggplot(aes(x=heating_phasedf$color)) + scale_x_discrete(limits=heating_phasedf$color) +
geom_point(aes(y=heating_phasedf$temp_initial , group=1)) + geom_line(aes(y=heating_phasedf$temp_initial, group=1, col="Intial Temp"), size=1) +
geom_point(aes(y=heating_phasedf$temp_after_10, group=1)) + geom_line(aes(y=heating_phasedf$temp_after_10, group=1, col="Temp after 10"), size=1) +
geom_point(aes(y=heating_phasedf$temp_after_20 , group=1)) + geom_line(aes(y=heating_phasedf$temp_after_20, group=1, col="Temp after 20"), size=1) +
geom_point(aes(y=heating_phasedf$temp_after_30, group=1)) + geom_line(aes(y=heating_phasedf$temp_after_30, group=1, col="Temp after 30"), size=1) +
geom_point(aes(y=heating_phasedf$temp_after_40, group=1)) + geom_line(aes(y=heating_phasedf$temp_after_40, group=1, col="Temp after 40"), size=1) +
geom_point(aes(y=heating_phasedf$temp_after_50, group=1)) + geom_line(aes(y=heating_phasedf$temp_after_50, group=1, col="Temp after 50"), size=1) +
geom_point(aes(y=heating_phasedf$temp_after_60, group=1)) + geom_line(aes(y=heating_phasedf$temp_after_60, group=1, col="Temp after 60"), size=1) +
labs(title="Heating Temperature Versus Color", x="Color", y="Degrees in Farenheit", colour="") +
scale_colour_manual(values = c("orange", "grey" , "blue" , "green", "cyan" , "black" , "red"))
This data used a small .csv file to demonstrate the color effect. I found above graphs interesting for both heating and cooling analysis. We can see above that black color cloth absorbs all colors and appears warmer than white color. More light a color absorbs, more warmer it would be.