Consider a stereo with CD player, FM–AM radio tuner, speakers (dual), and power amplifier (PA) components, as displayed with the reliabilities shown in Figure 6.11. Determine the system’s reliability. What assumptions are required in your model?
Define \(F(t)\) as the cumulative distrubution function of the failure rate,\(f(t)\), of a system or component, where \(t\) refers to time. The reliability \(R(t)\), of a system of component is the complement of \(F(t)\)
\(R(t) = 1-F(t)\)
| rs | |
|---|---|
| PA | 0.95 |
| CD | 0.98 |
| Radio | 0.97 |
| SpeakerA | 0.99 |
| SpeakerB | 0.99 |
The diagram above, gives us the assumptions that the following subsystems operate in parallel.
In addition, it seems that the parallel subsystems run in serials with each other and the power amplifier.
Therefore, if any of the two subsystems or the Power Amplifier components fail, the system as a whole will fail.
Futhermore, we can assume that the individual components are independent of one another.
Lastly, we can assume that each component and subsystems are running in serials and have independent reliabilities.
\(R_s(t)\) can be calculated by the union of the reliabilty for the components by using the following formula:
\(\displaystyle R_s(t) = \bigcup_{i=1}^nR_i(t)\)
Calculating the respective reliability for each of the three parallel subsystems
## [1] 0.9994
# Subsystem B
r_s2 <- rs["SpeakerA"] + rs["SpeakerB"] - rs["SpeakerA"] * rs["SpeakerB"]
names(r_s2) <- NULL ## [1] 0.9999
\(\displaystyle R_s(t) = \prod_{i=1}^nR_i(t)\)
To calculate the reliability of the system as a whole, we have to assume the Power Amplifier runs in series with the two subsystems.
## PA
## 0.9493351
Based on the above model, the System has a 95% probability of properly functioning.
Nutritional Requirements-A rancher has determined that the minimum weekly nutritional requirements for an average-sized horse include 40 lb of protein, 20 lb of carbohydrates, and 45 lb of roughage. These are obtained from the following sources in varying amounts at the prices indicated:
| items | protein | carbs | roughage | cost |
|---|---|---|---|---|
| hay | 0.5 | 2.0 | 5.0 | 1.8 |
| oats | 1.0 | 4.0 | 2.0 | 3.5 |
| feeding blocks | 2.0 | 0.5 | 1.0 | 0.4 |
| hpc | 6.0 | 1.0 | 2.5 | 1.0 |
| horse requirement | 40.0 | 20.0 | 45.0 | 0.0 |
Formulate a mathematical model to determine how to meet the minimum nutritional requirements at minimum cost.
\(x_1=\mathrm{hay~per~bale}\\\)
\(x_2=\mathrm{oats~per~sack}\\\)
\(x_3=\mathrm{feeding~blocks~per~block}\\\)
\(x_4=\mathrm{high~protein~concentrate~per~sack}\)
\(\textrm{Minimize}~1.8 x_1+3.5x_2+0.4x_3+1.0x_4\)
\(0.5x_1+x_2+2x_3+6x_4 \ge40\textrm{(protein)}\\\)
\(2x_1+4x_2+0.5x_3+x_4\ge20\textrm{(carbs)}\\\)
\(5x_1+2x_2+x_3+2.5x_4\ge45\textrm{(roughage)}\)
\({10x+35y}\)
\(8x+6y\le48\textrm{(board-feet of lumber)}\\\)
\(4x+y\le20\textrm{(hours of capacity)}\\\)
\(y\ge5\textrm{(demand)}\\\)
\(x,y \ge0\textrm{(nonnegativity)}\)
| points | x | y | obj_func |
|---|---|---|---|
| 1 | 0.00 | 5 | 175.0 |
| 2 | 0.00 | 8 | 280.0 |
| 3 | 2.25 | 5 | 197.5 |
The objective function is maximized at point (0,8) with a value of 280.
x <- seq(0, 6, by=0.1)
data <- data.frame(x = x, board_feet = (48-8*x)/6, hours = 20-4*x, demand = 5)
tidy <- gather(data, variable, "y", -x)
ggplotly(ggplot(tidy, aes(x=x, y=y, color=variable)) + geom_line())ggplot(data.frame(x=c(-5,10)),aes(x)) +
stat_function(fun=function(x) -4/3*x+8, geom="line", aes(col='y=-4/3x+8')) +
stat_function(fun=function(x) -4*x + 20, geom="line", aes(col='y=-4x+20')) +
stat_function(fun=function(x)5, geom="line", aes(col='y=5')) +
geom_vline(xintercept=0, aes(col= 'x=0')) +
geom_hline(yintercept= 0, aes(col='y=0')) +
geom_point(data=myint, aes(x,y)) +
annotate('text', x = 0, y = 9.2, label="(0, 8)", size=3 ) +
annotate('text', x = 0, y = 3.8, label="(0, 5)", size=3 ) +
annotate('text', x = 2.25, y = 3.8, label="(9/4, 5)", size=3 )Use the curve-fitting criterion to minimize the sum of the absolute deviations for the following models and data set:
\(y=ax\)
while(d > t){
if(crit_val_1<=crit_val_2){
b <- cv2
cv1 <- a+(1-r)*(b-a)
cv2 <- a+r*(b-a)
crit_val_1 <- cost(cv1,df1)
crit_val_2 <- cost(cv2,df1)
d1 <- rbind(d1,c(a,b,cv1,cv2,crit_val_1,crit_val_2))
d <- b-a
} else{
a <- cv1
cv1 <- a+(1-r)*(b-a)
cv2 <- a+r*(b-a)
crit_val_1 <- cost(cv1,df1)
crit_val_2 <- cost(cv2,df1)
d1 <- rbind(d1,c(a,b,cv1,cv2,crit_val_1,crit_val_2))
d <- b-a
}
}## [1] 7.066307
\(y=ax^2\)
while(d > t){
if(crit_val_1<=crit_val_2){
b <- cv2
cv1 <- a+(1-r)*(b-a)
cv2 <- a+r*(b-a)
crit_val_1 <- cost2(cv1,df2)
crit_val_2 <- cost2(cv2,df2)
d2 <- rbind(d2,c(a,b,cv1,cv2,crit_val_1,crit_val_2))
d <- b-a
} else{
a <- cv1
cv1 <- a+(1-r)*(b-a)
cv2 <- a+r*(b-a)
crit_val_1 <- cost2(cv1,df2)
crit_val_2 <- cost2(cv2,df2)
d2 <- rbind(d2,c(a,b,cv1,cv2,crit_val_1,crit_val_2))
d <- b-a
}
}## [1] 0.2232466
\(y=ax^3\)
while(d > t){
if(crit_val_1<=crit_val_2){
b <- cv2
cv1 <- a+(1-r)*(b-a)
cv2 <- a+r*(b-a)
crit_val_1 <- cost3(cv1,df3)
crit_val_2 <- cost3(cv2,df3)
d3 <- rbind(d3,c(a,b,cv1,cv2,crit_val_1,crit_val_2))
d <- b-a
} else{
a <- cv1
cv1 <- a+(1-r)*(b-a)
cv2 <- a+r*(b-a)
crit_val_1 <- cost3(cv1,df3)
crit_val_2 <- cost3(cv2,df3)
d3 <- rbind(d3,c(a,b,cv1,cv2,crit_val_1,crit_val_2))
d <- b-a
}
}## [1] 0
## [1] 0.01400168
## [1] 0.00700084
## [1] 433.7104
## [1] "The Optimal Value for the Model y=ax = 199.53946343722"
## [1] "The optimal value for the model y=ax^2 = 219.567063518652"
## [1] "The optimal value for the model y=ax^3 = 433.710399871649"