Problem 10

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1, 089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

#install.packages('ISLR')
library(ISLR)
## Warning: package 'ISLR' was built under R version 3.6.3
summary(Weekly)
##       Year           Lag1               Lag2               Lag3         
##  Min.   :1990   Min.   :-18.1950   Min.   :-18.1950   Min.   :-18.1950  
##  1st Qu.:1995   1st Qu.: -1.1540   1st Qu.: -1.1540   1st Qu.: -1.1580  
##  Median :2000   Median :  0.2410   Median :  0.2410   Median :  0.2410  
##  Mean   :2000   Mean   :  0.1506   Mean   :  0.1511   Mean   :  0.1472  
##  3rd Qu.:2005   3rd Qu.:  1.4050   3rd Qu.:  1.4090   3rd Qu.:  1.4090  
##  Max.   :2010   Max.   : 12.0260   Max.   : 12.0260   Max.   : 12.0260  
##       Lag4               Lag5              Volume       
##  Min.   :-18.1950   Min.   :-18.1950   Min.   :0.08747  
##  1st Qu.: -1.1580   1st Qu.: -1.1660   1st Qu.:0.33202  
##  Median :  0.2380   Median :  0.2340   Median :1.00268  
##  Mean   :  0.1458   Mean   :  0.1399   Mean   :1.57462  
##  3rd Qu.:  1.4090   3rd Qu.:  1.4050   3rd Qu.:2.05373  
##  Max.   : 12.0260   Max.   : 12.0260   Max.   :9.32821  
##      Today          Direction 
##  Min.   :-18.1950   Down:484  
##  1st Qu.: -1.1540   Up  :605  
##  Median :  0.2410             
##  Mean   :  0.1499             
##  3rd Qu.:  1.4050             
##  Max.   : 12.0260

Volume and year seem to be related

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

attach(Weekly)
glm.fit = glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly, family = binomial)
summary(glm.fit)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = binomial, data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Lag2

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm.probs = predict(glm.fit, type = "response")
glm.pred = rep("Down", length(glm.probs))
glm.pred[glm.probs > 0.5] = "Up"
table(glm.pred, Direction)
##         Direction
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557

When prediction is “Down”, model is right 54/(54+48)=52.9%. When prediction is “Up”, model is right 557/(430+557)=56.4% Model is has higher accuracy when the prediction is “Up”

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train.yrs <- Weekly$Year %in% (1990:2008)
train <- Weekly[train.yrs,]
test <- Weekly[!train.yrs,]
fit2 <- glm(Direction~Lag2, data=train, family=binomial)
fit2.prob <- predict(fit2, test, type="response")
fit2.pred <- ifelse(fit2.prob > 0.5, "Up", "Down")
table(fit2.pred, test$Direction)
##          
## fit2.pred Down Up
##      Down    9  5
##      Up     34 56
mean(fit2.pred == test$Direction) 
## [1] 0.625

(e) Repeat (d) using LDA.

library(MASS)
fit.lda <- lda(Direction~Lag2, data=train)
fit.lda.pred <- predict(fit.lda, test)$class
table(fit.lda.pred, test$Direction)
##             
## fit.lda.pred Down Up
##         Down    9  5
##         Up     34 56
mean(fit.lda.pred == test$Direction)
## [1] 0.625

(f) Repeat (d) using QDA.

fit.qda <- qda(Direction~Lag2, data=train)
fit.qda.pred <- predict(fit.qda, test)$class
table(fit.qda.pred, test$Direction)
##             
## fit.qda.pred Down Up
##         Down    0  0
##         Up     43 61
mean(fit.qda.pred == test$Direction)
## [1] 0.5865385

(g) Repeat (d) using KNN with K = 1.

library(class)
set.seed(1)
train.X <- as.matrix(train$Lag2)
test.X <- as.matrix(test$Lag2)
knn.pred <- knn(train.X, test.X, train$Direction, k=1)
table(knn.pred, test$Direction)
##         
## knn.pred Down Up
##     Down   21 30
##     Up     22 31
mean(knn.pred == test$Direction) 
## [1] 0.5

(h) Which of these methods appears to provide the best results on this data?

LDA and LOgistic regression have the best accueracy

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

##Problem 11

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data se containing both mpg01 and the other Auto variables. 172 4. Classification

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

pairs(Auto)

cor(Auto[, -9])
##                     mpg  cylinders displacement horsepower     weight
## mpg           1.0000000 -0.7776175   -0.8051269 -0.7784268 -0.8322442
## cylinders    -0.7776175  1.0000000    0.9508233  0.8429834  0.8975273
## displacement -0.8051269  0.9508233    1.0000000  0.8972570  0.9329944
## horsepower   -0.7784268  0.8429834    0.8972570  1.0000000  0.8645377
## weight       -0.8322442  0.8975273    0.9329944  0.8645377  1.0000000
## acceleration  0.4233285 -0.5046834   -0.5438005 -0.6891955 -0.4168392
## year          0.5805410 -0.3456474   -0.3698552 -0.4163615 -0.3091199
## origin        0.5652088 -0.5689316   -0.6145351 -0.4551715 -0.5850054
##              acceleration       year     origin
## mpg             0.4233285  0.5805410  0.5652088
## cylinders      -0.5046834 -0.3456474 -0.5689316
## displacement   -0.5438005 -0.3698552 -0.6145351
## horsepower     -0.6891955 -0.4163615 -0.4551715
## weight         -0.4168392 -0.3091199 -0.5850054
## acceleration    1.0000000  0.2903161  0.2127458
## year            0.2903161  1.0000000  0.1815277
## origin          0.2127458  0.1815277  1.0000000

MPG inversly corrilated with cylinders, wght, and hp.

(c) Split the data into a training set and a test set.

trainid <- sample(1:nrow(Auto), nrow(Auto)*0.7 , replace=F)
train <- Auto[trainid,]
test <- Auto[-trainid,]

12.6% error

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

#qda.fit = qda(mpg ~ cylinders + weight + displacement + horsepower, data = Auto, subset = train)
#qda.pred = predict(qda.fit, Auto.test)
#mean(qda.pred$class != mpg.test)

11% error

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

#fit.logit <- glm(mpg01~displacement+horsepower+weight+acceleration, data=train, family=binomial)
#logit.prob <- predict(fit.logit, test, type="response")
#logit.pred <- ifelse(logit.prob > 0.5, 1, 0)
#table(logit.pred, test$mpg01)
#mean(logit.pred != test$mpg01)

error 12.7

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

train.X <- cbind(train$displacement, train$horsepower, train$weight, train$acceleration)
test.X <- cbind(test$displacement, test$horsepower, test$weight, test$acceleration)
knn.pred <- knn(train.X, test.X, train$mpg, k=1)
table(knn.pred, test$mpg)
##         
## knn.pred 11 12 13 14 15 15.5 16 16.2 16.5 17 17.5 18 18.5 18.6 19 19.2 20
##     9     0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     10    1  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     11    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     12    0  1  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     13    0  0  1  1  3    1  1    0    0  0    0  0    0    0  0    0  0
##     14    0  0  3  1  1    0  1    0    0  1    1  0    0    0  0    0  0
##     14.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     15    0  1  0  1  0    1  0    0    0  0    0  0    0    0  0    0  0
##     15.5  0  0  0  2  1    0  0    0    0  0    0  0    0    0  0    0  0
##     16    0  0  0  0  0    0  0    0    1  1    0  1    1    0  1    0  0
##     16.5  0  0  0  1  0    0  0    0    0  0    0  0    0    0  0    0  0
##     16.9  0  0  0  0  0    0  1    0    0  0    0  0    0    0  0    0  0
##     17    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.6  0  0  0  0  1    0  0    0    0  0    0  0    0    0  0    0  0
##     17.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18    0  0  0  0  0    0  0    0    0  0    0  1    0    1  1    0  0
##     18.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18.2  0  0  1  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18.5  0  0  1  0  0    0  0    0    1  0    0  0    0    0  0    1  0
##     19    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  1    0  0
##     19.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20    0  0  0  0  0    0  0    0    0  1    0  0    0    0  0    0  0
##     20.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.5  0  0  0  0  0    0  1    0    0  0    0  0    0    0  0    0  0
##     20.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     21    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     21.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     22    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     22.4  0  0  0  0  0    0  0    1    0  0    0  0    0    0  0    0  0
##     22.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23    0  0  0  0  1    0  0    0    0  0    0  0    0    0  0    0  0
##     23.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     24    0  0  0  0  0    0  0    0    0  0    0  0    0    0  1    0  0
##     24.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     24.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27    0  0  0  0  0    0  0    0    0  0    0  1    0    0  1    0  0
##     27.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  1
##     28    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     28.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  1    0  0
##     28.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     29    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     29.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  1
##     31.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     35.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     38    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     38.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     39    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     39.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     43.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     46.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##         
## knn.pred 20.2 20.6 21 21.1 21.6 22 22.3 23 23.2 23.9 24 24.2 25 25.1 25.5
##     9       0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     10      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     11      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     12      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     13      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     14      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     14.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     15      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     15.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.1    0    1  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.8    0    0  0    0    0  0    0  0    0    0  1    0  0    0    0
##     19.9    0    0  0    0    0  1    0  0    0    0  0    0  0    0    0
##     20      0    0  1    0    0  1    0  0    0    0  1    0  0    0    0
##     20.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.8    1    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     21      0    0  0    0    0  0    0  1    0    0  0    0  1    0    0
##     21.5    0    0  0    0    0  1    0  0    0    0  0    0  0    0    0
##     22      0    0  0    0    1  1    0  0    0    1  0    0  0    0    0
##     22.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     22.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23      0    0  0    0    0  0    0  0    0    0  0    0  1    0    0
##     23.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     24      0    0  0    0    0  0    0  0    0    0  0    0  1    0    0
##     24.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     24.5    0    0  0    0    0  0    0  0    1    0  0    0  0    0    1
##     25      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.8    0    0  1    0    0  0    0  0    0    0  0    0  0    0    0
##     26      0    0  0    0    0  0    0  1    0    0  0    0  0    0    0
##     26.4    0    0  0    0    0  0    1  0    0    0  0    0  0    0    0
##     26.6    0    0  0    0    0  0    0  1    0    0  0    0  0    0    0
##     27      0    0  0    0    0  1    0  0    0    0  0    0  1    1    0
##     27.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27.4    0    0  0    0    0  0    0  0    0    0  0    0  1    0    0
##     27.5    0    0  0    0    0  0    0  0    0    0  0    0  1    0    0
##     27.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     28      0    0  0    0    0  0    0  1    0    0  0    0  0    0    0
##     28.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     28.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     29      0    0  0    1    0  0    0  0    0    0  0    0  0    0    0
##     29.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.7    0    0  0    0    0  0    0  0    0    0  0    1  0    0    0
##     32.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     35.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     38      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     38.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     39      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     39.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     43.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     46.6    0    0  0    0    0  0    0  0    0    0  1    0  0    0    0
##         
## knn.pred 26 26.5 26.8 27 28 28.8 29 29.5 29.8 29.9 30 30.9 31 31.5 32 32.1
##     9     0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     10    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     11    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     12    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     13    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     14    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     14.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     15    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     15.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20    1    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     21    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     21.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     22    0    0    0  0  0    0  0    0    0    1  0    0  0    0  0    0
##     22.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     22.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.5  0    0    1  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     24    0    0    0  0  0    0  0    0    1    0  0    0  0    0  0    0
##     24.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     24.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  1    0
##     25.8  0    0    0  0  0    1  0    0    0    0  0    0  0    0  0    0
##     26    0    0    0  1  0    0  0    0    0    0  0    0  0    0  0    0
##     26.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     26.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.9  0    0    0  1  0    0  0    0    0    0  0    0  0    0  0    0
##     28    1    0    0  0  0    0  1    0    0    0  0    0  0    0  0    0
##     28.1  0    0    0  0  0    0  0    0    0    0  1    0  0    0  0    0
##     28.4  0    0    0  0  1    0  0    0    0    0  0    0  0    0  0    0
##     29    0    0    0  0  0    0  1    0    0    0  0    1  0    0  0    0
##     29.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     30    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     30.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     30.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32    0    0    0  0  0    0  0    0    0    0  0    0  1    0  0    0
##     32.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.5  1    1    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.3  1    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.4  0    0    0  0  0    0  0    0    0    0  0    0  0    1  0    0
##     34.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     35.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    1
##     36.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37.3  0    0    0  0  0    0  0    1    0    0  0    0  0    0  0    0
##     37.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     38    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     38.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     39    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     39.4  0    0    0  0  0    0  0    0    0    0  1    0  0    0  0    0
##     43.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44.6  0    0    0  0  0    0  0    0    1    0  0    0  0    0  0    0
##     46.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##         
## knn.pred 32.4 33 34 34.1 35 35.1 36 36.1 37 39.1 40.8 41.5 43.4
##     9       0  0  0    0  0    0  0    0  0    0    0    0    0
##     10      0  0  0    0  0    0  0    0  0    0    0    0    0
##     11      0  0  0    0  0    0  0    0  0    0    0    0    0
##     12      0  0  0    0  0    0  0    0  0    0    0    0    0
##     13      0  0  0    0  0    0  0    0  0    0    0    0    0
##     14      0  0  0    0  0    0  0    0  0    0    0    0    0
##     14.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     15      0  0  0    0  0    0  0    0  0    0    0    0    0
##     15.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     16      0  0  0    0  0    0  0    0  0    0    0    0    0
##     16.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     16.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17      0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18      0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19      0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20      1  0  0    0  0    0  0    0  0    0    0    0    0
##     20.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     21      0  0  0    0  0    0  0    0  0    0    0    0    0
##     21.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     22      0  0  0    0  0    0  0    0  0    0    0    0    0
##     22.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     22.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23      0  0  0    0  1    0  0    0  0    0    0    0    0
##     23.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     24      0  0  0    0  0    0  0    0  1    0    0    0    0
##     24.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     24.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25      0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     26      0  0  2    0  0    0  0    0  0    0    0    0    0
##     26.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     26.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27      0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     28      0  0  0    0  0    0  0    0  0    0    0    0    0
##     28.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     28.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     29      0  0  0    0  0    0  0    0  0    0    0    0    0
##     29.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     30      0  0  0    1  0    0  0    0  0    0    0    0    0
##     30.5    0  1  0    0  0    0  0    0  0    0    0    0    0
##     30.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31      0  0  0    0  1    1  0    0  0    1    0    0    0
##     31.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32      0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.4    0  0  0    0  0    0  0    0  0    0    0    0    1
##     32.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33      0  1  0    0  0    0  0    0  0    0    0    0    0
##     33.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33.7    0  0  0    0  0    0  1    0  0    0    0    0    0
##     33.8    0  0  0    0  0    0  0    0  0    0    0    1    0
##     34.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     35.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     36      0  0  0    0  0    0  0    0  0    0    0    0    0
##     36.1    0  0  0    0  0    0  0    1  0    0    0    0    0
##     36.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37      0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     38      0  0  0    0  0    0  0    0  0    0    0    0    0
##     38.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     39      0  0  0    0  0    0  0    0  0    0    0    0    0
##     39.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     43.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     44      0  0  0    0  0    0  0    0  0    0    0    0    0
##     44.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     44.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     46.6    0  0  0    0  0    0  0    0  0    0    1    0    0
mean(knn.pred != test$mpg)
## [1] 0.9322034
knn.pred <- knn(train.X, test.X, train$mpg, k=10)
table(knn.pred, test$mpg)
##         
## knn.pred 11 12 13 14 15 15.5 16 16.2 16.5 17 17.5 18 18.5 18.6 19 19.2 20
##     9     0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     10    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     11    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     12    0  0  1  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     13    1  2  3  6  4    1  2    0    2  0    0  1    0    0  0    0  0
##     14    0  0  2  0  1    1  1    0    0  1    1  0    1    0  0    0  0
##     14.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     15    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     15.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     16    0  0  0  0  1    0  0    0    0  1    0  0    0    0  0    0  0
##     16.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     16.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18    0  0  0  0  1    0  0    0    0  0    0  1    0    1  1    1  0
##     18.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19    0  0  0  0  0    0  0    0    0  0    0  0    0    0  2    0  0
##     19.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20    0  0  0  0  0    0  0    0    0  1    0  0    0    0  0    0  0
##     20.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  1    0  0
##     20.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.5  0  0  0  0  0    0  1    1    0  0    0  0    0    0  0    0  0
##     20.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     21    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     21.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  1    0  0
##     22    0  0  0  0  0    0  0    0    0  0    0  1    0    0  1    0  1
##     22.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     22.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     24    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     24.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     24.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     28    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  1
##     28.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     28.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     29    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     29.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     35.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     38    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     38.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     39    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     39.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     43.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     46.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##         
## knn.pred 20.2 20.6 21 21.1 21.6 22 22.3 23 23.2 23.9 24 24.2 25 25.1 25.5
##     9       0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     10      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     11      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     12      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     13      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     14      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     14.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     15      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     15.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18      1    0  0    0    0  0    0  0    0    0  1    0  0    0    0
##     18.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19      0    0  0    0    0  1    0  0    0    0  0    0  0    0    0
##     19.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    1
##     20.5    0    1  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.6    0    0  0    0    0  1    0  0    0    0  0    0  0    0    0
##     20.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     21      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     21.5    0    0  0    0    0  0    0  0    0    0  0    0  0    1    0
##     22      0    0  0    0    0  2    0  0    0    0  0    0  0    0    0
##     22.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     22.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     24      0    0  1    1    0  1    0  0    1    1  0    0  3    0    0
##     24.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     24.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     26      0    0  0    0    0  0    0  1    0    0  1    0  2    0    0
##     26.4    0    0  0    0    0  0    1  0    0    0  0    1  0    0    0
##     26.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27      0    0  0    0    0  0    0  0    0    0  1    0  1    0    0
##     27.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27.5    0    0  1    0    0  0    0  0    0    0  0    0  0    0    0
##     27.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     28      0    0  0    0    0  0    0  1    0    0  0    0  0    0    0
##     28.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     28.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     29      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     29.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31      0    0  0    0    1  0    0  0    0    0  0    0  0    0    0
##     31.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.6    0    0  0    0    0  0    0  1    0    0  0    0  0    0    0
##     31.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.7    0    0  0    0    0  0    0  1    0    0  0    0  0    0    0
##     32.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     35.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     38      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     38.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     39      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     39.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     43.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     46.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##         
## knn.pred 26 26.5 26.8 27 28 28.8 29 29.5 29.8 29.9 30 30.9 31 31.5 32 32.1
##     9     0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     10    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     11    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     12    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     13    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     14    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     14.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     15    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     15.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19    1    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.2  0    0    0  0  0    0  0    0    0    0  1    0  0    0  0    0
##     20.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     21    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     21.5  1    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     22    0    1    0  1  0    0  0    0    0    1  0    0  0    0  0    0
##     22.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     22.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     24    0    0    1  0  1    0  0    0    1    0  0    0  0    0  0    0
##     24.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     24.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     26    1    0    0  0  0    0  0    0    0    0  0    1  0    0  1    0
##     26.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     26.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27    0    0    0  0  0    0  0    1    0    0  0    0  0    0  0    1
##     27.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     28    0    0    0  0  0    1  0    0    0    0  0    0  0    0  0    0
##     28.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     28.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     29    1    0    0  1  0    0  1    0    1    0  0    0  0    0  0    0
##     29.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     30    0    0    0  0  0    0  1    0    0    0  0    0  0    0  0    0
##     30.5  0    0    0  0  0    0  0    0    0    0  1    0  0    0  0    0
##     30.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32    0    0    0  0  0    0  0    0    0    0  0    0  1    0  0    0
##     32.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     35.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37    0    0    0  0  0    0  0    0    0    0  0    0  0    1  0    0
##     37.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     38    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     38.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     39    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     39.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     43.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     46.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##         
## knn.pred 32.4 33 34 34.1 35 35.1 36 36.1 37 39.1 40.8 41.5 43.4
##     9       0  0  0    0  0    0  0    0  0    0    0    0    0
##     10      0  0  0    0  0    0  0    0  0    0    0    0    0
##     11      0  0  0    0  0    0  0    0  0    0    0    0    0
##     12      0  0  0    0  0    0  0    0  0    0    0    0    0
##     13      0  0  0    0  0    0  0    0  0    0    0    0    0
##     14      0  0  0    0  0    0  0    0  0    0    0    0    0
##     14.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     15      0  0  0    0  0    0  0    0  0    0    0    0    0
##     15.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     16      0  0  0    0  0    0  0    0  0    0    0    0    0
##     16.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     16.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17      0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18      0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19      0  0  0    0  0    0  0    0  0    0    0    0    1
##     19.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20      0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     21      0  0  0    0  0    0  0    0  0    0    0    0    0
##     21.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     22      0  0  1    0  0    0  0    0  0    0    0    0    0
##     22.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     22.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23      0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     24      0  1  0    0  1    0  0    0  1    0    0    0    0
##     24.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     24.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25      0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     26      1  0  1    0  0    0  0    0  0    0    0    0    0
##     26.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     26.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27      0  0  0    0  0    0  0    0  0    0    1    0    0
##     27.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     28      0  0  0    0  0    0  0    0  0    0    0    1    0
##     28.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     28.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     29      0  0  0    0  0    0  0    0  0    0    0    0    0
##     29.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     30      0  0  0    0  0    0  0    0  0    0    0    0    0
##     30.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     30.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31      0  0  0    0  1    1  0    0  0    1    0    0    0
##     31.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32      0  0  0    1  0    0  0    0  0    0    0    0    0
##     32.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33      0  1  0    0  0    0  0    0  0    0    0    0    0
##     33.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.3    0  0  0    0  0    0  1    0  0    0    0    0    0
##     34.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     35.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     36      0  0  0    0  0    0  0    1  0    0    0    0    0
##     36.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     36.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37      0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     38      0  0  0    0  0    0  0    0  0    0    0    0    0
##     38.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     39      0  0  0    0  0    0  0    0  0    0    0    0    0
##     39.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     43.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     44      0  0  0    0  0    0  0    0  0    0    0    0    0
##     44.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     44.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     46.6    0  0  0    0  0    0  0    0  0    0    0    0    0
mean(knn.pred != test$mpg)
## [1] 0.9067797
knn.pred <- knn(train.X, test.X, train$mpg, k=100)
table(knn.pred, test$mpg)
##         
## knn.pred 11 12 13 14 15 15.5 16 16.2 16.5 17 17.5 18 18.5 18.6 19 19.2 20
##     9     0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     10    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     11    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     12    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     13    1  2  5  6  2    1  3    0    1  0    1  0    0    0  0    0  0
##     14    0  0  1  0  4    1  0    0    1  2    0  1    1    1  1    0  0
##     14.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     15    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     15.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     16    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     16.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     16.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     17.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18    0  0  0  0  1    0  1    1    0  1    0  1    0    0  5    1  1
##     18.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     18.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     19.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     20.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     21    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     21.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     22    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     22.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     22.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     23.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     24    0  0  0  0  0    0  0    0    0  0    0  1    0    0  0    0  1
##     24.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     24.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     25.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     26.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     27.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     28    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     28.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     28.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     29    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     29.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     30.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     31.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     32.9  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     33.8  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.5  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     34.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     35.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     36.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.2  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     37.7  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     38    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     38.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     39    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     39.4  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     43.1  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44    0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44.3  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     44.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##     46.6  0  0  0  0  0    0  0    0    0  0    0  0    0    0  0    0  0
##         
## knn.pred 20.2 20.6 21 21.1 21.6 22 22.3 23 23.2 23.9 24 24.2 25 25.1 25.5
##     9       0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     10      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     11      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     12      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     13      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     14      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     14.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     15      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     15.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     16.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     17.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18      1    1  0    0    1  4    1  1    1    0  1    1  2    1    0
##     18.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     18.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     19.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     20.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     21      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     21.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     22      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     22.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     22.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     23.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     24      0    0  1    0    0  0    0  2    0    0  0    0  1    0    1
##     24.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     24.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     25.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     26      0    0  0    0    0  0    0  1    0    0  2    0  3    0    0
##     26.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     26.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     27.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     28      0    0  1    1    0  1    0  0    0    1  0    0  0    0    0
##     28.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     28.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     29      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     29.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     30.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     31.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     32.9    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     33.8    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.5    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     34.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     35.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     36.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.2    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     37.7    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     38      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     38.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     39      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     39.4    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     43.1    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44      0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44.3    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     44.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##     46.6    0    0  0    0    0  0    0  0    0    0  0    0  0    0    0
##         
## knn.pred 26 26.5 26.8 27 28 28.8 29 29.5 29.8 29.9 30 30.9 31 31.5 32 32.1
##     9     0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     10    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     11    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     12    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     13    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     14    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     14.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     15    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     15.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     16.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     17.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18    0    0    1  1  1    0  0    0    1    0  1    0  0    0  0    0
##     18.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     18.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     19.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     20.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     21    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     21.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     22    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     22.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     22.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     23.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     24    1    1    0  0  0    1  0    0    0    0  0    0  0    0  0    0
##     24.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     24.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     25.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     26    2    0    0  1  0    0  2    1    1    0  1    1  1    1  0    1
##     26.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     26.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     27.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     28    1    0    0  0  0    0  0    0    0    1  0    0  0    0  1    0
##     28.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     28.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     29    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     29.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     30    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     30.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     30.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     31.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     32.9  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     33.8  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.5  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     34.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     35.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     36.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37.2  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     37.7  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     38    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     38.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     39    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     39.4  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     43.1  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44    0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44.3  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     44.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##     46.6  0    0    0  0  0    0  0    0    0    0  0    0  0    0  0    0
##         
## knn.pred 32.4 33 34 34.1 35 35.1 36 36.1 37 39.1 40.8 41.5 43.4
##     9       0  0  0    0  0    0  0    0  0    0    0    0    0
##     10      0  0  0    0  0    0  0    0  0    0    0    0    0
##     11      0  0  0    0  0    0  0    0  0    0    0    0    0
##     12      0  0  0    0  0    0  0    0  0    0    0    0    0
##     13      0  0  0    0  0    0  0    0  0    0    0    0    0
##     14      0  0  0    0  0    0  0    0  0    0    0    0    0
##     14.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     15      0  0  0    0  0    0  0    0  0    0    0    0    0
##     15.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     16      0  0  0    0  0    0  0    0  0    0    0    0    0
##     16.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     16.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17      0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     17.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18      0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     18.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19      0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     19.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20      0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     20.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     21      0  0  0    0  0    0  0    0  0    0    0    0    0
##     21.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     22      0  0  0    0  0    0  0    0  0    0    0    0    0
##     22.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     22.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23      0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     23.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     24      0  0  0    0  0    0  0    0  0    0    0    0    0
##     24.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     24.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25      0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     25.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     26      0  2  1    1  1    1  1    1  0    1    1    1    0
##     26.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     26.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27      0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     27.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     28      1  0  1    0  1    0  0    0  1    0    0    0    1
##     28.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     28.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     29      0  0  0    0  0    0  0    0  0    0    0    0    0
##     29.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     30      0  0  0    0  0    0  0    0  0    0    0    0    0
##     30.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     30.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31      0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     31.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32      0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     32.9    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33      0  0  0    0  0    0  0    0  0    0    0    0    0
##     33.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     33.8    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.5    0  0  0    0  0    0  0    0  0    0    0    0    0
##     34.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     35.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     36      0  0  0    0  0    0  0    0  0    0    0    0    0
##     36.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     36.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37      0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.2    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     37.7    0  0  0    0  0    0  0    0  0    0    0    0    0
##     38      0  0  0    0  0    0  0    0  0    0    0    0    0
##     38.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     39      0  0  0    0  0    0  0    0  0    0    0    0    0
##     39.4    0  0  0    0  0    0  0    0  0    0    0    0    0
##     43.1    0  0  0    0  0    0  0    0  0    0    0    0    0
##     44      0  0  0    0  0    0  0    0  0    0    0    0    0
##     44.3    0  0  0    0  0    0  0    0  0    0    0    0    0
##     44.6    0  0  0    0  0    0  0    0  0    0    0    0    0
##     46.6    0  0  0    0  0    0  0    0  0    0    0    0    0
mean(knn.pred != test$mpg)
## [1] 0.9322034

knn best at 10

##Problem 13

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

data(Boston)
summary(Boston)
##       crim                zn             indus            chas        
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000  
##  1st Qu.: 0.08204   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000  
##       nox               rm             age              dis        
##  Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130  
##  1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100  
##  Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207  
##  Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795  
##  3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188  
##  Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127  
##       rad              tax           ptratio          black       
##  Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32  
##  1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38  
##  Median : 5.000   Median :330.0   Median :19.05   Median :391.44  
##  Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67  
##  3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23  
##  Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90  
##      lstat            medv      
##  Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 6.95   1st Qu.:17.02  
##  Median :11.36   Median :21.20  
##  Mean   :12.65   Mean   :22.53  
##  3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :37.97   Max.   :50.00
crim01 <- ifelse(Boston$crim > median(Boston$crim), 1, 0)
mydf <- data.frame(Boston, crim01)
pairs(mydf)  # pred1 = age, dis, lstat, medv

sort(cor(mydf)[1,])  # pred2 = tax, rad (highest correlations with crim)
##        medv       black         dis          rm          zn        chas 
## -0.38830461 -0.38506394 -0.37967009 -0.21924670 -0.20046922 -0.05589158 
##     ptratio         age       indus      crim01         nox       lstat 
##  0.28994558  0.35273425  0.40658341  0.40939545  0.42097171  0.45562148 
##         tax         rad        crim 
##  0.58276431  0.62550515  1.00000000
trainid <- sample(1:nrow(mydf), nrow(mydf)*0.7 , replace=F)  # 70% train, 30% test
train <- mydf[trainid,]
test <- mydf[-trainid,]
train.X1 <- cbind(train$age, train$dis, train$lstat, train$medv)
test.X1 <- cbind(test$age, test$dis, test$lstat, test$medv)
train.X2 <- cbind(train$tax, train$rad)
test.X2 <- cbind(test$tax, test$rad)
# Logistic Regression models
fit.logit1 <- glm(crim01~age+dis+lstat+medv, data=train, family=binomial)
logit1.prob <- predict(fit.logit1, test, type="response")
logit1.pred <- ifelse(logit1.prob > 0.5, 1, 0)
mean(logit1.pred != test$crim01)  # error rate
## [1] 0.1973684
fit.logit2 <- glm(crim01~tax+rad, data=train, family=binomial)
logit2.prob <- predict(fit.logit2, test, type="response")
logit2.pred <- ifelse(logit2.prob > 0.5, 1, 0)
mean(logit2.pred != test$crim01)  # error rate
## [1] 0.2368421
# LDA models
fit.lda1 <- lda(crim01~age+dis+lstat+medv, data=train)
fit.lda1.pred <- predict(fit.lda1, test)$class
mean(fit.lda1.pred != test$crim01)  # error rate
## [1] 0.2171053
fit.lda2 <- lda(crim01~tax+rad, data=train)
fit.lda2.pred <- predict(fit.lda2, test)$class
mean(fit.lda2.pred != test$crim01)  # error rate
## [1] 0.2763158
# QDA models
fit.qda1 <- qda(crim01~age+dis+lstat+medv, data=train)
fit.qda1.pred <- predict(fit.qda1, test)$class
mean(fit.qda1.pred != test$crim01)  # error rate
## [1] 0.2697368
fit.qda2 <- qda(crim01~tax+rad, data=train)
fit.qda2.pred <- predict(fit.qda2, test)$class
mean(fit.qda2.pred != test$crim01)  # error rate
## [1] 0.2236842
# KNN models
knn1.pred <- knn(train.X1, test.X1, train$crim01, k=1)
mean(knn1.pred != test$crim01)
## [1] 0.2631579
knn1.pred <- knn(train.X1, test.X1, train$crim01, k=5)
mean(knn1.pred != test$crim01)
## [1] 0.2565789
knn1.pred <- knn(train.X1, test.X1, train$crim01, k=10)
mean(knn1.pred != test$crim01)
## [1] 0.2302632