Income Inequality
To investigate income inequality over time, we consider the American Community Survey (ACS). The ACS provides data at the county level from 2005-2018. However, we will also consider national and state-level estimates. The main variable of interest is Total Household Income, although Age is used to filter out individuals under 15, and Group Quarters Status to filter out individuals living in group quarters. I also replace missing values and code negative incomes as 0.
# clean the acs data
acs_data <- acs_data %>%
mutate(hh_inc = na_if(HHINCOME, 9999999) %>%
replace(HHINCOME < 0, 0) %>% # # setting bottom code to 0 for now
replace(AGE < 15 | GQ == 2, NA)) # only consider population 15 yrs and older
print("ACS Data Summary - All Years (2005-2018), All Counties")
## [1] "ACS Data Summary - All Years (2005-2018), All Counties"
summary(acs_data)
## YEAR SAMPLE SERIAL CBSERIAL
## Min. :2000 Min. :200004 Min. : 1 Min. :1.000e+00
## 1st Qu.:2007 1st Qu.:200701 1st Qu.: 275696 1st Qu.:4.207e+05
## Median :2011 Median :201101 Median : 596335 Median :8.414e+05
## Mean :2011 Mean :201066 Mean : 633023 Mean :2.996e+11
## 3rd Qu.:2015 3rd Qu.:201501 3rd Qu.: 983824 3rd Qu.:1.262e+06
## Max. :2018 Max. :201801 Max. :1410976 Max. :2.018e+12
## NA's :5027734
## HHWT CLUSTER STATEFIP COUNTYFIP
## Min. : 1.0 Min. :2.000e+12 Min. : 1.00 Min. : 0
## 1st Qu.: 58.0 1st Qu.:2.007e+12 1st Qu.:12.00 1st Qu.: 0
## Median : 83.0 Median :2.011e+12 Median :27.00 Median : 13
## Mean : 114.5 Mean :2.011e+12 Mean :27.68 Mean : 47
## 3rd Qu.: 133.0 3rd Qu.:2.015e+12 3rd Qu.:41.00 3rd Qu.: 67
## Max. :4331.0 Max. :2.018e+12 Max. :56.00 Max. :810
## NA's :5027734
## PUMA STRATA GQ HHINCOME
## Min. : 100 Min. : 1 Min. :1.000 Min. : -39996
## 1st Qu.: 803 1st Qu.: 50056 1st Qu.:1.000 1st Qu.: 34500
## Median : 1906 Median : 160045 Median :1.000 Median : 64500
## Mean : 3456 Mean : 309526 Mean :1.085 Mean : 415963
## 3rd Qu.: 3704 3rd Qu.: 350042 3rd Qu.:1.000 3rd Qu.: 110000
## Max. :77777 Max. :7777722 Max. :5.000 Max. :9999999
## NA's :5027734
## PERNUM PERWT AGE hh_inc
## Min. : 1.000 Min. : 1.0 Min. : 0.00 Min. : 0
## 1st Qu.: 1.000 1st Qu.: 59.0 1st Qu.:19.00 1st Qu.: 33400
## Median : 2.000 Median : 86.0 Median :40.00 Median : 62000
## Mean : 2.104 Mean : 119.8 Mean :39.96 Mean : 82860
## 3rd Qu.: 3.000 3rd Qu.: 140.0 3rd Qu.:58.00 3rd Qu.: 103400
## Max. :20.000 Max. :5419.0 Max. :97.00 Max. :3563100
## NA's :10424104
First, we look at the number of counties with full information available for each state.
# state level
df.state <- acs_data %>%
filter(PERNUM == 1 &
STATEFIP <= 56) %>% # restrict to 50 states + DC
group_by(YEAR, STATEFIP) %>%
summarise(mean = weighted.mean(hh_inc, na.rm = T, w = HHWT),
median = weighted.median(hh_inc, na.rm = T, w = HHWT),
gini = weighted.gini(hh_inc[!is.na(hh_inc)],
HHWT[!is.na(hh_inc)])$Gini,
n_hh = sum(PERNUM*HHWT)/1000000) %>%
group_by(STATEFIP) %>%
mutate(avg_n_hh = mean(n_hh)) %>% # average n_hh over time
ungroup() %>%
mutate(rank_n_hh = dense_rank(desc(avg_n_hh))) # rank states by size
# county level
df.county <- acs_data %>%
filter(PERNUM == 1 & !is.na(hh_inc) &
!is.na(COUNTYFIP) & COUNTYFIP != 0) %>%
mutate(State = paste0(as_factor(STATEFIP), " (", STATEFIP, ")"),
STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)),
COUNTYFIP = paste0(
strrep("0",(3 - nchar(as.character(COUNTYFIP)))),
as.character(COUNTYFIP)),
FIP = paste(STATEFIP, COUNTYFIP)) %>%
group_by(YEAR, FIP) %>%
summarise(State = first(State),
mean = weighted.mean(hh_inc, na.rm = T, w = HHWT),
median = weighted.median(hh_inc, na.rm = T, w = HHWT),
gini = weighted.gini(hh_inc[!is.na(hh_inc)],
HHWT[!is.na(hh_inc)])$Gini,
n_hh = sum(PERNUM*HHWT)/1000000) %>%
group_by(FIP)
For now, we consider counties that encompass at least one PUMA; in other words, counties of at least 100,000 people. There were 472 of these counties in the U.S. for the pre-2012 period. Because the ACS can be aggregated to the PUMA level every year, and there was a PUMA boundary change in 2012, there are 453 counties with full data in every year. As an alternative measure, I’ve included the simple count of the number of counties in each file, for which there are 331 counties with full data. In addition to containing more estimated counties, the PUMA method should provide more accurately weighted results.
# add number of years variable
df.county <- df.county %>%
group_by(FIP) %>%
mutate(n_years = n()) %>%
ungroup()
# look at counties with all data for each year
df.county.long <- df.county %>%
mutate(all_years = c(n_years == 14)*1) %>%
filter(all_years == 1) %>%
group_by(State) %>%
summarise(`n (county variable estimates)` = n()/14)
# use test data, and compute the whole thing on Sherlock
acs_puma <- acs_data %>%
filter(PERNUM == 1 & YEAR > 2004) %>%
mutate(State = paste0(as_factor(STATEFIP), " (", STATEFIP, ")"),
PUMA2k = paste0(
strrep("0",(5 - nchar(as.character(PUMA)))),
as.character(PUMA)),
STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)),
PUMA_ID = paste0(STATEFIP, PUMA2k)) %>%
dplyr::select(-c(COUNTYFIP))
### reconstruct weights for county level estimates
acs_data_county_pre2012 <- acs_puma %>%
filter(YEAR < 2012) %>% # pre 2012 PUMA boundaries
left_join(dplyr::select(county_to_puma_pre2012,
COUNTYFIP, n_pumas, PUMA_ID, STATEFIP, FIP,
contains_puma, wgt_puma, afact))
acs_data_county_post2012 <- acs_puma %>% # post 2012 PUMA boundaries
filter(YEAR > 2011) %>%
left_join(dplyr::select(county_to_puma_post2012,
COUNTYFIP, n_pumas, PUMA_ID, STATEFIP, FIP,
contains_puma, wgt_puma, afact))
acs_data_county <- bind_rows(acs_data_county_pre2012, acs_data_county_post2012) %>%
mutate(HHWT_new = HHWT/n_pumas) %>%
filter(!is.na(n_pumas)) %>%
group_by(FIP) %>%
mutate(n_years = length(unique(YEAR))) %>%
filter(n_years == 14)
df.puma <- acs_data_county %>%
dplyr::select(YEAR, FIP, State) %>%
distinct() %>%
group_by(FIP) %>%
mutate(n_years = length(unique(YEAR)),
all_years = c(n_years == 14)*1) %>%
filter(all_years == 1 & !duplicated(FIP)) %>%
group_by(State) %>%
summarise(`n (PUMA estimates)` = n())
df.county.long <- read.csv("df.county.long.csv") %>%
dplyr::select(-X)
df.puma <- read.csv("df.puma.csv") %>%
dplyr::select(-X)
puma_county_table <- full_join(df.puma, df.county.long) %>%
rename("Counties (PUMA estimates)" = "n..PUMA.estimates.",
"Counties (ACS county var)" = "n..county.variable.estimates.") %>%
add_row(State = "Total", `Counties (PUMA estimates)` = sum(df.puma$n..PUMA.estimates.),
`Counties (ACS county var)` = sum(df.county.long$n..county.variable.estimates.))
## Joining, by = "State"
## Warning: Column `State` joining factors with different levels, coercing to
## character vector
kable(puma_county_table, caption = paste("Number of counties with complete data in each state (2005-2018), measured using aggregated county variable and ACS PUMAs")) %>%
kable_styling() %>%
scroll_box(width = "800px", height = "500px")
Number of counties with complete data in each state (2005-2018), measured using aggregated county variable and ACS PUMAs
|
State
|
Counties (PUMA estimates)
|
Counties (ACS county var)
|
|
Alabama (1)
|
10
|
7
|
|
Alaska (2)
|
1
|
1
|
|
Arizona (4)
|
5
|
5
|
|
Arkansas (5)
|
2
|
3
|
|
California (6)
|
34
|
34
|
|
Colorado (8)
|
11
|
NA
|
|
Connecticut (9)
|
8
|
8
|
|
Delaware (10)
|
3
|
3
|
|
District of Columbia (11)
|
1
|
1
|
|
Florida (12)
|
30
|
24
|
|
Georgia (13)
|
11
|
9
|
|
Hawaii (15)
|
2
|
2
|
|
Idaho (16)
|
1
|
NA
|
|
Illinois (17)
|
18
|
9
|
|
Indiana (18)
|
13
|
10
|
|
Iowa (19)
|
5
|
4
|
|
Kansas (20)
|
4
|
2
|
|
Kentucky (21)
|
3
|
3
|
|
Louisiana (22)
|
8
|
3
|
|
Maine (23)
|
3
|
2
|
|
Maryland (24)
|
11
|
11
|
|
Massachusetts (25)
|
10
|
1
|
|
Michigan (26)
|
15
|
12
|
|
Minnesota (27)
|
7
|
6
|
|
Mississippi (28)
|
4
|
3
|
|
Missouri (29)
|
7
|
5
|
|
Montana (30)
|
1
|
NA
|
|
Nebraska (31)
|
3
|
2
|
|
Nevada (32)
|
2
|
2
|
|
New Hampshire (33)
|
3
|
NA
|
|
New Jersey (34)
|
19
|
16
|
|
New Mexico (35)
|
3
|
1
|
|
New York (36)
|
25
|
19
|
|
North Carolina (37)
|
19
|
11
|
|
North Dakota (38)
|
1
|
1
|
|
Ohio (39)
|
25
|
18
|
|
Oklahoma (40)
|
3
|
NA
|
|
Oregon (41)
|
8
|
5
|
|
Pennsylvania (42)
|
28
|
19
|
|
Rhode Island (44)
|
3
|
3
|
|
South Carolina (45)
|
7
|
4
|
|
Tennessee (47)
|
10
|
6
|
|
Texas (48)
|
31
|
26
|
|
Utah (49)
|
4
|
4
|
|
Virginia (51)
|
12
|
9
|
|
Washington (53)
|
9
|
9
|
|
Wisconsin (55)
|
10
|
8
|
|
Total
|
453
|
331
|
To examine variation across states and counties, it is necessary to consider the complex survey design of the ACS. Looking at states and counties, we must consider survey strata and household weights. To aggregate PUMAs into county estimates, I re-weight households according to the share of the county that the PUMA contributes. If a county just has one PUMA, then the household weights are unchanged, but for counties with multiple PUMAs, households are downweighted in proportion to the overlap between PUMA and county.
The following displays county-level Gini variance estimates and standard errors.
#############################################
### State and county variance estimates #####
#############################################
county_state_gini <- data.frame(matrix(nrow = 0, ncol = 9))
names(county_state_gini) <- c("hh_inc", "se", "gini.moe", "STATEFIP",
"YEAR", "LEVEL",
"COUNTYFIP", "FIP", "se_squared")
########### STATE LEVEL ##################
for(i in c("06", "12", "36", "42", "48")){
### estimate gini coefficients and variance using complex survey design
des_acs <- svydesign(ids = ~CLUSTER, weights = ~HHWT , strata = ~STRATA,
data = acs_data %>%
filter(!is.na(hh_inc) & STATEFIP == i ) %>%
dplyr::select(CLUSTER, HHWT, STRATA, YEAR, STATEFIP, PUMA, hh_inc,
State))
des_acs <- convey_prep(des_acs)
svygini( ~hh_inc , design = des_acs )
puma_gini <- svyby(~hh_inc, by = ~interaction(YEAR, STATEFIP, PUMA), design = des_acs, FUN = svygini, deff = FALSE)
state_gini <- svyby(~hh_inc, by = ~interaction(YEAR, STATEFIP), design = des_acs, FUN = svygini, deff = FALSE)
state_gini <- state_gini %>%
mutate(gini.moe = paste0(round(hh_inc, 4), " (", round(se, 4), ")"),
STATEFIP = substr(`interaction(YEAR, STATEFIP)`, 6, 7),
YEAR = substr(`interaction(YEAR, STATEFIP)`, 0, 4),
LEVEL = "State")
########### COUNTY LEVEL ###################
# if a county = puma, weights won't change
# otherwise, pumas that only make up a portion of the county will be downweighted
des_acs <- svydesign(ids = ~CLUSTER, weights = ~HHWT_new , strata = ~STRATA,
data = acs_data_county %>%
filter(!is.na(hh_inc) & STATEFIP == i ) %>%
dplyr::select(CLUSTER, HHWT_new, STRATA, YEAR, STATEFIP, PUMA, hh_inc, FIP))
des_acs <- convey_prep(des_acs)
county_gini <- svyby(~hh_inc, by = ~interaction(YEAR, FIP), design = des_acs, FUN = svygini, deff = FALSE)
county_gini <- county_gini %>%
mutate(gini.moe = paste0(round(hh_inc, 4), " (", round(se, 4), ")"),
STATEFIP = substr(`interaction(YEAR, FIP)`, 6, 7),
COUNTYFIP = substr(`interaction(YEAR, FIP)`, 8, 12),
YEAR = substr(`interaction(YEAR, FIP)`, 0, 4),
LEVEL = "County")
####### join county and state estimates
county_state_gini <- bind_rows(county_state_gini,
dplyr::select(state_gini, -starts_with("interact")),
dplyr::select(county_gini, -starts_with("interact"))) %>%
mutate(FIP = paste0(STATEFIP, COUNTYFIP),
se_squared = se^2)
}
# run this to give acs_data correct state labels
acs_data <- acs_data %>%
filter(PERNUM == 1 & YEAR > 2004) %>%
mutate(State = paste0(as_factor(STATEFIP), " (",
STATEFIP,
")"),
STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)),
COUNTYFIP = paste0(
strrep("0",(5 - nchar(as.character(COUNTYFIP)))),
as.character(COUNTYFIP)),
PUMA2k = paste0(
strrep("0",(5 - nchar(as.character(PUMA)))),
as.character(PUMA)),
PUMA_ID = paste0(STATEFIP, PUMA2k))
county_state_gini <- read.csv("county_state_gini.csv") %>%
dplyr::select(-X) %>%
mutate(STATEFIP = paste0(
strrep("0",(2 - nchar(as.character(STATEFIP)))),
as.character(STATEFIP)),
COUNTYFIP = paste0(
strrep("0",(5 - nchar(as.character(COUNTYFIP)))),
as.character(COUNTYFIP)))
# run second loop to output ses
for(i in c("06", "12", "36", "42", "48")){
df.state.county.wide <- county_state_gini %>%
filter(STATEFIP == i & YEAR > 2004) %>%
dplyr::select(YEAR, se, FIP, LEVEL) %>%
mutate(FIP = replace(as.character(FIP), LEVEL == "State",
first(acs_data$State[acs_data$STATEFIP == i]))) %>%
dplyr::select(YEAR, se, FIP) %>%
group_by(YEAR) %>%
pivot_wider(names_from = FIP, values_from = se)
print(kable(df.state.county.wide, caption = "Gini standard errors for the five most populous states and their counties with complete data (2005-2018)") %>%
kable_styling() %>%
scroll_box(width = "900px", height = "500px"))
}
Gini standard errors for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
California (6)
|
06 001
|
06 007
|
06 013
|
06 019
|
06 023
|
06 025
|
06 029
|
06 031
|
06 037
|
06 039
|
06 041
|
06 047
|
06 053
|
06 055
|
06 059
|
06 061
|
06 065
|
06 067
|
06 071
|
06 073
|
06 075
|
06 077
|
06 079
|
06 081
|
06 083
|
06 085
|
06 087
|
06 089
|
06 095
|
06 097
|
06 099
|
06 107
|
06 111
|
06 113
|
|
2005
|
0.0012740
|
0.0054515
|
0.0133535
|
0.0068103
|
0.0078690
|
0.0214774
|
0.0149719
|
0.0085691
|
0.0223949
|
0.0027418
|
0.0185695
|
0.0093834
|
0.0100812
|
0.0100403
|
0.0355828
|
0.0040214
|
0.0103301
|
0.0055803
|
0.0053614
|
0.0058026
|
0.0043449
|
0.0071242
|
0.0096846
|
0.0126033
|
0.0075346
|
0.0094608
|
0.0048545
|
0.0119476
|
0.0158566
|
0.0113981
|
0.0093915
|
0.0155113
|
0.0116248
|
0.0076507
|
0.0133710
|
|
2006
|
0.0011427
|
0.0050571
|
0.0136716
|
0.0061503
|
0.0082622
|
0.0148980
|
0.0176217
|
0.0072815
|
0.0150458
|
0.0022688
|
0.0261542
|
0.0108265
|
0.0109414
|
0.0113129
|
0.0176629
|
0.0037656
|
0.0093901
|
0.0044738
|
0.0052987
|
0.0050874
|
0.0039852
|
0.0068134
|
0.0082875
|
0.0148402
|
0.0068167
|
0.0085341
|
0.0047340
|
0.0153573
|
0.0162342
|
0.0094840
|
0.0096817
|
0.0108671
|
0.0108618
|
0.0068706
|
0.0136389
|
|
2007
|
0.0011499
|
0.0049602
|
0.0127861
|
0.0058032
|
0.0074939
|
0.0184915
|
0.0211461
|
0.0086895
|
0.0154131
|
0.0023919
|
0.0233848
|
0.0104048
|
0.0123371
|
0.0106778
|
0.0160700
|
0.0036045
|
0.0093557
|
0.0049638
|
0.0050376
|
0.0046770
|
0.0035923
|
0.0066061
|
0.0109453
|
0.0131139
|
0.0070105
|
0.0087175
|
0.0045919
|
0.0123562
|
0.0170246
|
0.0086156
|
0.0099080
|
0.0124755
|
0.0112678
|
0.0070515
|
0.0127005
|
|
2008
|
0.0011414
|
0.0046603
|
0.0120554
|
0.0060890
|
0.0072744
|
0.0228068
|
0.0183933
|
0.0073202
|
0.0120794
|
0.0023616
|
0.0214920
|
0.0111503
|
0.0108737
|
0.0099347
|
0.0220692
|
0.0037400
|
0.0106523
|
0.0045212
|
0.0046826
|
0.0053766
|
0.0036985
|
0.0065255
|
0.0082167
|
0.0116757
|
0.0066860
|
0.0081811
|
0.0045019
|
0.0120514
|
0.0154390
|
0.0093357
|
0.0089506
|
0.0084466
|
0.0103624
|
0.0072888
|
0.0152555
|
|
2009
|
0.0010907
|
0.0048942
|
0.0118198
|
0.0062165
|
0.0075870
|
0.0183510
|
0.0157328
|
0.0066870
|
0.0211389
|
0.0022227
|
0.0214232
|
0.0092548
|
0.0132170
|
0.0091937
|
0.0135149
|
0.0035556
|
0.0135917
|
0.0046674
|
0.0050034
|
0.0047840
|
0.0036188
|
0.0062455
|
0.0078469
|
0.0120823
|
0.0064239
|
0.0086285
|
0.0042729
|
0.0115750
|
0.0178031
|
0.0088805
|
0.0079449
|
0.0085604
|
0.0099176
|
0.0066292
|
0.0126803
|
|
2010
|
0.0010522
|
0.0045855
|
0.0190929
|
0.0058410
|
0.0072824
|
0.0186685
|
0.0142770
|
0.0064794
|
0.0145117
|
0.0021225
|
0.0248944
|
0.0094045
|
0.0137759
|
0.0098383
|
0.0182063
|
0.0034270
|
0.0100626
|
0.0043850
|
0.0048215
|
0.0045321
|
0.0035918
|
0.0060544
|
0.0077548
|
0.0137738
|
0.0063025
|
0.0079262
|
0.0043950
|
0.0107317
|
0.0141520
|
0.0089841
|
0.0081151
|
0.0099358
|
0.0096990
|
0.0064536
|
0.0137064
|
|
2011
|
0.0011797
|
0.0048963
|
0.0148667
|
0.0083103
|
0.0071229
|
0.0174437
|
0.0164094
|
0.0070919
|
0.0234851
|
0.0023494
|
0.0199978
|
0.0109757
|
0.0116251
|
0.0101873
|
0.0162115
|
0.0036797
|
0.0113365
|
0.0052229
|
0.0056536
|
0.0056200
|
0.0037888
|
0.0066044
|
0.0083494
|
0.0125914
|
0.0065618
|
0.0079601
|
0.0045854
|
0.0108174
|
0.0126585
|
0.0100967
|
0.0090906
|
0.0091367
|
0.0084676
|
0.0074336
|
0.0132007
|
|
2012
|
0.0011265
|
0.0048387
|
0.0151235
|
0.0056087
|
0.0084491
|
0.0156837
|
0.0188390
|
0.0088509
|
0.0236514
|
0.0021825
|
0.0201696
|
0.0103078
|
0.0129587
|
0.0087301
|
0.0144554
|
0.0039420
|
0.0086612
|
0.0044419
|
0.0058187
|
0.0053496
|
0.0039370
|
0.0067492
|
0.0122286
|
0.0153579
|
0.0069301
|
0.0101238
|
0.0044887
|
0.0129352
|
0.0119564
|
0.0094358
|
0.0088342
|
0.0092812
|
0.0092804
|
0.0075146
|
0.0154586
|
|
2013
|
0.0011442
|
0.0045707
|
0.0140653
|
0.0057363
|
0.0079912
|
0.0166344
|
0.0163271
|
0.0083064
|
0.0202160
|
0.0022601
|
0.0208065
|
0.0097701
|
0.0115420
|
0.0096592
|
0.0137974
|
0.0037958
|
0.0098725
|
0.0048239
|
0.0059854
|
0.0051900
|
0.0043145
|
0.0074922
|
0.0098383
|
0.0126398
|
0.0068164
|
0.0098441
|
0.0042072
|
0.0125804
|
0.0149247
|
0.0086983
|
0.0084329
|
0.0098632
|
0.0120908
|
0.0068325
|
0.0135798
|
|
2014
|
0.0011600
|
0.0051349
|
0.0164144
|
0.0063330
|
0.0078271
|
0.0153609
|
0.0209405
|
0.0087990
|
0.0183121
|
0.0022877
|
0.0193896
|
0.0099446
|
0.0228956
|
0.0102019
|
0.0170682
|
0.0041941
|
0.0102111
|
0.0048399
|
0.0070647
|
0.0051297
|
0.0039646
|
0.0065169
|
0.0085005
|
0.0129784
|
0.0067250
|
0.0113974
|
0.0043826
|
0.0126870
|
0.0127442
|
0.0084450
|
0.0092816
|
0.0129651
|
0.0134931
|
0.0069581
|
0.0138386
|
|
2015
|
0.0011187
|
0.0045560
|
0.0160279
|
0.0061100
|
0.0074857
|
0.0179509
|
0.0138931
|
0.0099185
|
0.0167272
|
0.0022343
|
0.0217464
|
0.0105312
|
0.0135426
|
0.0113331
|
0.0132922
|
0.0037947
|
0.0099026
|
0.0044340
|
0.0056722
|
0.0050739
|
0.0038856
|
0.0063339
|
0.0081455
|
0.0122768
|
0.0066291
|
0.0101502
|
0.0044716
|
0.0139796
|
0.0113839
|
0.0092540
|
0.0090549
|
0.0100596
|
0.0112387
|
0.0070835
|
0.0133472
|
|
2016
|
0.0011292
|
0.0045090
|
0.0161929
|
0.0058814
|
0.0080134
|
0.0310538
|
0.0221368
|
0.0094286
|
0.0171482
|
0.0022423
|
0.0203389
|
0.0098747
|
0.0166007
|
0.0100245
|
0.0152251
|
0.0041279
|
0.0108912
|
0.0045691
|
0.0053080
|
0.0050099
|
0.0040751
|
0.0063503
|
0.0110637
|
0.0127326
|
0.0065090
|
0.0096432
|
0.0043210
|
0.0126956
|
0.0142247
|
0.0093159
|
0.0091344
|
0.0097380
|
0.0151351
|
0.0068554
|
0.0160161
|
|
2017
|
0.0010991
|
0.0049055
|
0.0149172
|
0.0058890
|
0.0081178
|
0.0223547
|
0.0202160
|
0.0078719
|
0.0151898
|
0.0022121
|
0.0174288
|
0.0106974
|
0.0150546
|
0.0091988
|
0.0129694
|
0.0039129
|
0.0098401
|
0.0046290
|
0.0051330
|
0.0052472
|
0.0039606
|
0.0060835
|
0.0083273
|
0.0118902
|
0.0060710
|
0.0101308
|
0.0042111
|
0.0125590
|
0.0145139
|
0.0086102
|
0.0089684
|
0.0092535
|
0.0110020
|
0.0082758
|
0.0129002
|
|
2018
|
0.0011469
|
0.0046826
|
0.0149418
|
0.0058616
|
0.0070496
|
0.0174533
|
0.0205664
|
0.0092818
|
0.0178445
|
0.0023065
|
0.0204278
|
0.0103004
|
0.0139488
|
0.0104013
|
0.0128470
|
0.0040430
|
0.0096618
|
0.0055314
|
0.0055049
|
0.0064368
|
0.0040536
|
0.0062918
|
0.0086100
|
0.0135776
|
0.0064054
|
0.0101015
|
0.0043983
|
0.0118142
|
0.0118694
|
0.0081711
|
0.0094083
|
0.0142134
|
0.0144586
|
0.0070279
|
0.0131858
|
Gini standard errors for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
Florida (12)
|
12 001
|
12 009
|
12 011
|
12 015
|
12 019
|
12 021
|
12 031
|
12 033
|
12 053
|
12 057
|
12 069
|
12 071
|
12 073
|
12 081
|
12 083
|
12 085
|
12 086
|
12 091
|
12 095
|
12 097
|
12 099
|
12 101
|
12 103
|
12 105
|
12 109
|
12 111
|
12 113
|
12 115
|
12 117
|
12 127
|
|
2005
|
0.0016341
|
0.0124953
|
0.0078932
|
0.0047356
|
0.0149164
|
0.0136468
|
0.0105818
|
0.0080551
|
0.0110517
|
0.0159171
|
0.0066160
|
0.0113479
|
0.0080041
|
0.0124286
|
0.0114750
|
0.0106374
|
0.0157276
|
0.0050123
|
0.0143009
|
0.0068583
|
0.0130564
|
0.0054520
|
0.0098317
|
0.0071541
|
0.0110385
|
0.0149242
|
0.0162404
|
0.0158257
|
0.0092973
|
0.0086153
|
0.0103289
|
|
2006
|
0.0015906
|
0.0134263
|
0.0102127
|
0.0050599
|
0.0173296
|
0.0112849
|
0.0094080
|
0.0071676
|
0.0136290
|
0.0138853
|
0.0064951
|
0.0100858
|
0.0081989
|
0.0106187
|
0.0094829
|
0.0107600
|
0.0158735
|
0.0045896
|
0.0145489
|
0.0071731
|
0.0138847
|
0.0048687
|
0.0088909
|
0.0063180
|
0.0074701
|
0.0161911
|
0.0113046
|
0.0157465
|
0.0096094
|
0.0091329
|
0.0149573
|
|
2007
|
0.0015849
|
0.0130440
|
0.0078452
|
0.0049550
|
0.0181710
|
0.0167268
|
0.0109689
|
0.0076714
|
0.0121367
|
0.0153279
|
0.0059354
|
0.0110404
|
0.0080491
|
0.0099306
|
0.0095103
|
0.0105866
|
0.0150424
|
0.0045881
|
0.0164700
|
0.0070636
|
0.0152188
|
0.0055702
|
0.0093877
|
0.0066882
|
0.0089296
|
0.0125498
|
0.0114384
|
0.0239719
|
0.0090589
|
0.0091939
|
0.0104859
|
|
2008
|
0.0015254
|
0.0116658
|
0.0074355
|
0.0045374
|
0.0153929
|
0.0136436
|
0.0095768
|
0.0075408
|
0.0103857
|
0.0127734
|
0.0059771
|
0.0101994
|
0.0079408
|
0.0121513
|
0.0109144
|
0.0170210
|
0.0123705
|
0.0044323
|
0.0113876
|
0.0059894
|
0.0126591
|
0.0051784
|
0.0087848
|
0.0065255
|
0.0096591
|
0.0134022
|
0.0104701
|
0.0147598
|
0.0099112
|
0.0077728
|
0.0092766
|
|
2009
|
0.0014901
|
0.0138441
|
0.0077666
|
0.0049825
|
0.0143703
|
0.0138355
|
0.0099483
|
0.0065742
|
0.0104065
|
0.0155718
|
0.0056844
|
0.0110125
|
0.0075296
|
0.0116019
|
0.0095886
|
0.0122070
|
0.0133487
|
0.0047279
|
0.0114456
|
0.0063349
|
0.0116817
|
0.0048092
|
0.0089327
|
0.0062153
|
0.0082521
|
0.0130066
|
0.0127926
|
0.0152246
|
0.0090382
|
0.0080963
|
0.0090222
|
|
2010
|
0.0014865
|
0.0138245
|
0.0079933
|
0.0047016
|
0.0128478
|
0.0129045
|
0.0100678
|
0.0067584
|
0.0106171
|
0.0150164
|
0.0057937
|
0.0095224
|
0.0075992
|
0.0125237
|
0.0113705
|
0.0106979
|
0.0161696
|
0.0043905
|
0.0125527
|
0.0059473
|
0.0127269
|
0.0051282
|
0.0079704
|
0.0058690
|
0.0087149
|
0.0157308
|
0.0130145
|
0.0160881
|
0.0094055
|
0.0079205
|
0.0087076
|
|
2011
|
0.0016499
|
0.0122077
|
0.0079975
|
0.0049656
|
0.0294757
|
0.0344552
|
0.0125291
|
0.0072060
|
0.0124754
|
0.0135696
|
0.0058956
|
0.0127779
|
0.0083250
|
0.0121010
|
0.0115207
|
0.0138505
|
0.0162229
|
0.0047169
|
0.0130350
|
0.0066330
|
0.0151491
|
0.0048126
|
0.0118803
|
0.0056476
|
0.0079166
|
0.0162590
|
0.0178495
|
0.0228622
|
0.0087080
|
0.0097716
|
0.0103996
|
|
2012
|
0.0015956
|
0.0155357
|
0.0082262
|
0.0052093
|
0.0156371
|
0.0159451
|
0.0110659
|
0.0077707
|
0.0111019
|
0.0138570
|
0.0058684
|
0.0126139
|
0.0083039
|
0.0111966
|
0.0122290
|
0.0136554
|
0.0146144
|
0.0045377
|
0.0123390
|
0.0067165
|
0.0153895
|
0.0052847
|
0.0093902
|
0.0058769
|
0.0083284
|
0.0133719
|
0.0139004
|
0.0248417
|
0.0095314
|
0.0093742
|
0.0085928
|
|
2013
|
0.0015789
|
0.0134597
|
0.0076280
|
0.0052231
|
0.0147284
|
0.0221755
|
0.0103982
|
0.0070928
|
0.0166741
|
0.0125716
|
0.0057621
|
0.0116588
|
0.0077419
|
0.0114424
|
0.0124129
|
0.0107706
|
0.0143374
|
0.0046393
|
0.0140836
|
0.0066552
|
0.0164659
|
0.0048720
|
0.0079749
|
0.0066896
|
0.0081099
|
0.0117967
|
0.0160969
|
0.0174296
|
0.0095696
|
0.0097195
|
0.0088328
|
|
2014
|
0.0015471
|
0.0129251
|
0.0090382
|
0.0051129
|
0.0142111
|
0.0179484
|
0.0093912
|
0.0074851
|
0.0113768
|
0.0150685
|
0.0053945
|
0.0136344
|
0.0074430
|
0.0114856
|
0.0100229
|
0.0132204
|
0.0164520
|
0.0042903
|
0.0140710
|
0.0071153
|
0.0137135
|
0.0049925
|
0.0080660
|
0.0063562
|
0.0083454
|
0.0131079
|
0.0138630
|
0.0178245
|
0.0095996
|
0.0109542
|
0.0081309
|
|
2015
|
0.0016633
|
0.0128694
|
0.0086599
|
0.0054163
|
0.0170776
|
0.0196200
|
0.0096466
|
0.0085704
|
0.0116738
|
0.0171051
|
0.0055309
|
0.0107420
|
0.0079053
|
0.0126110
|
0.0100465
|
0.0123616
|
0.0166944
|
0.0047802
|
0.0136492
|
0.0099108
|
0.0152029
|
0.0051256
|
0.0083625
|
0.0059599
|
0.0089657
|
0.0120102
|
0.0156928
|
0.0178580
|
0.0095256
|
0.0090077
|
0.0091142
|
|
2016
|
0.0015543
|
0.0149351
|
0.0073538
|
0.0053229
|
0.0160879
|
0.0139638
|
0.0094727
|
0.0073563
|
0.0116083
|
0.0122838
|
0.0053155
|
0.0106849
|
0.0077745
|
0.0111386
|
0.0107695
|
0.0160260
|
0.0163799
|
0.0043811
|
0.0132593
|
0.0073721
|
0.0131074
|
0.0050675
|
0.0096983
|
0.0056604
|
0.0089403
|
0.0123206
|
0.0154899
|
0.0149021
|
0.0097869
|
0.0099113
|
0.0081561
|
|
2017
|
0.0015809
|
0.0144891
|
0.0082390
|
0.0057151
|
0.0144813
|
0.0173863
|
0.0087934
|
0.0080025
|
0.0104695
|
0.0136944
|
0.0057245
|
0.0100213
|
0.0089470
|
0.0138348
|
0.0105942
|
0.0124260
|
0.0172775
|
0.0043014
|
0.0127030
|
0.0069769
|
0.0146696
|
0.0051294
|
0.0079471
|
0.0058730
|
0.0084194
|
0.0112313
|
0.0132260
|
0.0159329
|
0.0090840
|
0.0108240
|
0.0081641
|
|
2018
|
0.0015908
|
0.0136409
|
0.0073930
|
0.0054801
|
0.0174427
|
0.0137969
|
0.0108349
|
0.0075838
|
0.0110052
|
0.0177204
|
0.0053778
|
0.0131792
|
0.0084698
|
0.0125231
|
0.0109207
|
0.0148290
|
0.0140675
|
0.0044778
|
0.0133372
|
0.0073552
|
0.0143843
|
0.0052090
|
0.0081548
|
0.0059524
|
0.0090496
|
0.0108996
|
0.0152550
|
0.0234287
|
0.0091880
|
0.0094101
|
0.0086107
|
Gini standard errors for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
New York (36)
|
36 001
|
36 005
|
36 007
|
36 013
|
36 027
|
36 029
|
36 047
|
36 055
|
36 059
|
36 061
|
36 063
|
36 065
|
36 067
|
36 071
|
36 075
|
36 081
|
36 083
|
36 085
|
36 087
|
36 089
|
36 091
|
36 093
|
36 103
|
36 111
|
36 119
|
|
2005
|
0.0020670
|
0.0146037
|
0.0072189
|
0.0110915
|
0.0142006
|
0.0110932
|
0.0073823
|
0.0066563
|
0.0084142
|
0.0057286
|
0.0051669
|
0.0199559
|
0.0165928
|
0.0082598
|
0.0136928
|
0.0149806
|
0.0043644
|
0.0131109
|
0.0262467
|
0.0124505
|
0.0161731
|
0.0172323
|
0.0183906
|
0.0065483
|
0.0134123
|
0.0077932
|
|
2006
|
0.0017836
|
0.0102938
|
0.0059672
|
0.0118821
|
0.0149958
|
0.0122541
|
0.0069759
|
0.0047235
|
0.0069381
|
0.0059269
|
0.0048611
|
0.0145043
|
0.0084360
|
0.0082128
|
0.0111466
|
0.0128617
|
0.0042230
|
0.0122522
|
0.0116068
|
0.0109343
|
0.0133105
|
0.0111036
|
0.0314359
|
0.0058376
|
0.0125745
|
0.0059805
|
|
2007
|
0.0018176
|
0.0166129
|
0.0059482
|
0.0145597
|
0.0142268
|
0.0119461
|
0.0074916
|
0.0053140
|
0.0076048
|
0.0057977
|
0.0046325
|
0.0104821
|
0.0103888
|
0.0079735
|
0.0120882
|
0.0114532
|
0.0043343
|
0.0132716
|
0.0099766
|
0.0127846
|
0.0178110
|
0.0147604
|
0.0162990
|
0.0056825
|
0.0162113
|
0.0064349
|
|
2008
|
0.0018963
|
0.0120236
|
0.0066745
|
0.0157568
|
0.0130684
|
0.0122774
|
0.0070015
|
0.0052197
|
0.0077794
|
0.0055680
|
0.0047868
|
0.0113476
|
0.0104448
|
0.0084707
|
0.0111120
|
0.0170452
|
0.0048121
|
0.0126246
|
0.0086621
|
0.0120430
|
0.0145677
|
0.0116128
|
0.0130724
|
0.0057291
|
0.0143893
|
0.0067203
|
|
2009
|
0.0018881
|
0.0119805
|
0.0074268
|
0.0100512
|
0.0121487
|
0.0108121
|
0.0070344
|
0.0050551
|
0.0070296
|
0.0055323
|
0.0049110
|
0.0200211
|
0.0103964
|
0.0078374
|
0.0101927
|
0.0141152
|
0.0051057
|
0.0131089
|
0.0099043
|
0.0128212
|
0.0164704
|
0.0136098
|
0.0137179
|
0.0056041
|
0.0119900
|
0.0064721
|
|
2010
|
0.0017068
|
0.0105207
|
0.0055948
|
0.0106808
|
0.0127909
|
0.0138280
|
0.0067884
|
0.0049522
|
0.0081666
|
0.0053810
|
0.0044904
|
0.0134837
|
0.0083719
|
0.0080077
|
0.0100889
|
0.0130069
|
0.0047807
|
0.0138450
|
0.0110825
|
0.0107342
|
0.0298197
|
0.0117898
|
0.0132936
|
0.0057980
|
0.0111011
|
0.0060846
|
|
2011
|
0.0019164
|
0.0114309
|
0.0063306
|
0.0092119
|
0.0127057
|
0.0115495
|
0.0062093
|
0.0048303
|
0.0089418
|
0.0054491
|
0.0057323
|
0.0145723
|
0.0109417
|
0.0072590
|
0.0133493
|
0.0168974
|
0.0047643
|
0.0170633
|
0.0096641
|
0.0108112
|
0.0140134
|
0.0143551
|
0.0150166
|
0.0055701
|
0.0124763
|
0.0057445
|
|
2012
|
0.0018272
|
0.0123815
|
0.0065019
|
0.0091560
|
0.0238032
|
0.0129098
|
0.0082106
|
0.0043137
|
0.0074804
|
0.0052248
|
0.0058744
|
0.0142282
|
0.0114421
|
0.0083391
|
0.0114532
|
0.0170971
|
0.0042247
|
0.0147564
|
0.0113346
|
0.0108079
|
0.0194630
|
0.0157114
|
0.0174387
|
0.0054141
|
0.0163295
|
0.0059152
|
|
2013
|
0.0020184
|
0.0131596
|
0.0076760
|
0.0119180
|
0.0144075
|
0.0108738
|
0.0068209
|
0.0048928
|
0.0089139
|
0.0062836
|
0.0065471
|
0.0151118
|
0.0083818
|
0.0083927
|
0.0143637
|
0.0167807
|
0.0051344
|
0.0129765
|
0.0102441
|
0.0115877
|
0.0248648
|
0.0138659
|
0.0142245
|
0.0062167
|
0.0122518
|
0.0063668
|
|
2014
|
0.0018606
|
0.0155879
|
0.0061748
|
0.0121158
|
0.0185587
|
0.0114324
|
0.0075341
|
0.0046478
|
0.0084119
|
0.0057748
|
0.0057344
|
0.0131168
|
0.0109185
|
0.0097317
|
0.0113154
|
0.0133519
|
0.0048806
|
0.0229906
|
0.0111535
|
0.0129282
|
0.0174487
|
0.0136085
|
0.0183163
|
0.0052155
|
0.0218313
|
0.0061878
|
|
2015
|
0.0019800
|
0.0152232
|
0.0067426
|
0.0100298
|
0.0120018
|
0.0118187
|
0.0076694
|
0.0045339
|
0.0083912
|
0.0054447
|
0.0060795
|
0.0134624
|
0.0131143
|
0.0090682
|
0.0141691
|
0.0135997
|
0.0048397
|
0.0170044
|
0.0098045
|
0.0125311
|
0.0175567
|
0.0131348
|
0.0184568
|
0.0055196
|
0.0136846
|
0.0066144
|
|
2016
|
0.0018836
|
0.0121559
|
0.0061286
|
0.0100536
|
0.0114462
|
0.0119649
|
0.0075467
|
0.0044453
|
0.0077347
|
0.0051384
|
0.0054383
|
0.0130240
|
0.0122761
|
0.0090848
|
0.0113366
|
0.0152700
|
0.0044114
|
0.0140997
|
0.0110749
|
0.0111086
|
0.0196946
|
0.0131154
|
0.0150126
|
0.0058196
|
0.0127497
|
0.0058368
|
|
2017
|
0.0018453
|
0.0116857
|
0.0074248
|
0.0140146
|
0.0135326
|
0.0126039
|
0.0070987
|
0.0045181
|
0.0082513
|
0.0055741
|
0.0055957
|
0.0135993
|
0.0121400
|
0.0083222
|
0.0109442
|
0.0171453
|
0.0047343
|
0.0149880
|
0.0109197
|
0.0125648
|
0.0181880
|
0.0138356
|
0.0201960
|
0.0058810
|
0.0140307
|
0.0057039
|
|
2018
|
0.0018203
|
0.0122618
|
0.0070459
|
0.0138750
|
0.0157383
|
0.0115314
|
0.0071197
|
0.0047276
|
0.0069556
|
0.0055500
|
0.0053853
|
0.0177837
|
0.0100295
|
0.0090125
|
0.0102243
|
0.0160230
|
0.0044021
|
0.0138441
|
0.0109890
|
0.0129252
|
0.0138738
|
0.0182674
|
0.0142741
|
0.0060039
|
0.0124964
|
0.0059788
|
Gini standard errors for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
Pennsylvania (42)
|
42 003
|
42 007
|
42 011
|
42 017
|
42 019
|
42 021
|
42 027
|
42 029
|
42 041
|
42 043
|
42 045
|
42 049
|
42 051
|
42 055
|
42 069
|
42 071
|
42 075
|
42 077
|
42 079
|
42 085
|
42 089
|
42 091
|
42 095
|
42 101
|
42 107
|
42 125
|
42 129
|
42 133
|
|
2005
|
0.0020278
|
0.0054590
|
0.0125522
|
0.0175199
|
0.0077296
|
0.0132326
|
0.0228382
|
0.0188312
|
0.0081322
|
0.0130742
|
0.0141609
|
0.0095529
|
0.0157435
|
0.0121519
|
0.0115515
|
0.0120994
|
0.0121233
|
0.0194747
|
0.0083672
|
0.0099873
|
0.0172786
|
0.0110768
|
0.0060415
|
0.0123013
|
0.0064199
|
0.0195516
|
0.0126323
|
0.0064298
|
0.0093570
|
|
2006
|
0.0018820
|
0.0056567
|
0.0116740
|
0.0117331
|
0.0073681
|
0.0127822
|
0.0152289
|
0.0190606
|
0.0078558
|
0.0117049
|
0.0109706
|
0.0080075
|
0.0151158
|
0.0094868
|
0.0132986
|
0.0107804
|
0.0090860
|
0.0157062
|
0.0073139
|
0.0102616
|
0.0169507
|
0.0109385
|
0.0060999
|
0.0111237
|
0.0062843
|
0.0110416
|
0.0119798
|
0.0063488
|
0.0088704
|
|
2007
|
0.0020100
|
0.0062745
|
0.0116049
|
0.0106594
|
0.0073305
|
0.0138282
|
0.0134389
|
0.0184546
|
0.0088317
|
0.0133358
|
0.0160202
|
0.0090101
|
0.0148676
|
0.0099627
|
0.0138018
|
0.0108625
|
0.0097750
|
0.0160592
|
0.0076961
|
0.0098813
|
0.0159568
|
0.0109044
|
0.0066102
|
0.0122081
|
0.0063783
|
0.0106788
|
0.0144284
|
0.0077962
|
0.0102218
|
|
2008
|
0.0019164
|
0.0057039
|
0.0117261
|
0.0112470
|
0.0069369
|
0.0137917
|
0.0130437
|
0.0180346
|
0.0079621
|
0.0104887
|
0.0135282
|
0.0093530
|
0.0115304
|
0.0128222
|
0.0109465
|
0.0133145
|
0.0103364
|
0.0144528
|
0.0072181
|
0.0115922
|
0.0150613
|
0.0087046
|
0.0063423
|
0.0108381
|
0.0063585
|
0.0122134
|
0.0107179
|
0.0070688
|
0.0094376
|
|
2009
|
0.0019900
|
0.0055740
|
0.0096963
|
0.0094204
|
0.0075853
|
0.0135738
|
0.0126014
|
0.0182283
|
0.0080398
|
0.0112587
|
0.0131020
|
0.0078952
|
0.0113508
|
0.0102473
|
0.0134602
|
0.0126109
|
0.0098091
|
0.0182118
|
0.0076905
|
0.0125745
|
0.0156194
|
0.0107412
|
0.0069467
|
0.0107779
|
0.0070371
|
0.0110084
|
0.0104933
|
0.0064608
|
0.0102222
|
|
2010
|
0.0018823
|
0.0057095
|
0.0098070
|
0.0111780
|
0.0077758
|
0.0102216
|
0.0144330
|
0.0144079
|
0.0086671
|
0.0101755
|
0.0124806
|
0.0075123
|
0.0116736
|
0.0106751
|
0.0098133
|
0.0132991
|
0.0088277
|
0.0167102
|
0.0078449
|
0.0102187
|
0.0146852
|
0.0091017
|
0.0061171
|
0.0117466
|
0.0062390
|
0.0106597
|
0.0131431
|
0.0064374
|
0.0090643
|
|
2011
|
0.0019788
|
0.0050322
|
0.0156541
|
0.0123813
|
0.0072474
|
0.0152811
|
0.0133573
|
0.0184409
|
0.0084066
|
0.0119419
|
0.0149649
|
0.0089902
|
0.0201415
|
0.0095925
|
0.0115726
|
0.0124308
|
0.0093753
|
0.0215619
|
0.0089976
|
0.0097557
|
0.0279146
|
0.0122759
|
0.0061683
|
0.0145006
|
0.0074394
|
0.0126246
|
0.0123902
|
0.0064562
|
0.0102237
|
|
2012
|
0.0019612
|
0.0055488
|
0.0124378
|
0.0107353
|
0.0083562
|
0.0138429
|
0.0168461
|
0.0194335
|
0.0088490
|
0.0128851
|
0.0158514
|
0.0093622
|
0.0124200
|
0.0145468
|
0.0107408
|
0.0129202
|
0.0092933
|
0.0239999
|
0.0087192
|
0.0100713
|
0.0135974
|
0.0164698
|
0.0068475
|
0.0137084
|
0.0066040
|
0.0123710
|
0.0112604
|
0.0100027
|
0.0115467
|
|
2013
|
0.0021158
|
0.0062267
|
0.0114336
|
0.0099301
|
0.0086222
|
0.0134071
|
0.0210154
|
0.0188161
|
0.0090419
|
0.0123480
|
0.0137858
|
0.0115935
|
0.0134312
|
0.0190613
|
0.0128606
|
0.0122585
|
0.0087573
|
0.0211676
|
0.0099577
|
0.0119971
|
0.0161384
|
0.0158094
|
0.0076193
|
0.0128598
|
0.0082081
|
0.0205573
|
0.0129412
|
0.0125929
|
0.0125626
|
|
2014
|
0.0019970
|
0.0065481
|
0.0150174
|
0.0091570
|
0.0093055
|
0.0138714
|
0.0188286
|
0.0219025
|
0.0079021
|
0.0115147
|
0.0144650
|
0.0088559
|
0.0127841
|
0.0162949
|
0.0134191
|
0.0123042
|
0.0110974
|
0.0152390
|
0.0097176
|
0.0087945
|
0.0211063
|
0.0175259
|
0.0068128
|
0.0134040
|
0.0067033
|
0.0132731
|
0.0146627
|
0.0109634
|
0.0105188
|
|
2015
|
0.0020098
|
0.0064647
|
0.0128056
|
0.0175892
|
0.0082000
|
0.0140402
|
0.0114930
|
0.0185579
|
0.0088221
|
0.0118190
|
0.0124819
|
0.0083959
|
0.0124533
|
0.0169312
|
0.0137414
|
0.0134904
|
0.0101917
|
0.0186652
|
0.0093100
|
0.0123734
|
0.0238172
|
0.0157382
|
0.0068298
|
0.0108313
|
0.0064157
|
0.0190646
|
0.0131888
|
0.0102271
|
0.0095122
|
|
2016
|
0.0019317
|
0.0057002
|
0.0122138
|
0.0108631
|
0.0081621
|
0.0135765
|
0.0138597
|
0.0181977
|
0.0083993
|
0.0100393
|
0.0131667
|
0.0094865
|
0.0121980
|
0.0154462
|
0.0125830
|
0.0123486
|
0.0114294
|
0.0176358
|
0.0097802
|
0.0096348
|
0.0154508
|
0.0162534
|
0.0068026
|
0.0116943
|
0.0066579
|
0.0212093
|
0.0145777
|
0.0096155
|
0.0093657
|
|
2017
|
0.0020404
|
0.0065908
|
0.0115600
|
0.0135716
|
0.0078299
|
0.0143773
|
0.0160545
|
0.0206099
|
0.0089167
|
0.0112752
|
0.0147515
|
0.0097666
|
0.0139593
|
0.0155836
|
0.0125161
|
0.0141046
|
0.0091058
|
0.0156487
|
0.0097820
|
0.0143370
|
0.0157084
|
0.0200571
|
0.0068820
|
0.0134335
|
0.0068176
|
0.0178074
|
0.0121100
|
0.0114790
|
0.0104589
|
|
2018
|
0.0020143
|
0.0058238
|
0.0111005
|
0.0106215
|
0.0075858
|
0.0154213
|
0.0120732
|
0.0189173
|
0.0081114
|
0.0129738
|
0.0139005
|
0.0091746
|
0.0120300
|
0.0245573
|
0.0142585
|
0.0123140
|
0.0106139
|
0.0145928
|
0.0105386
|
0.0090610
|
0.0195054
|
0.0178912
|
0.0071347
|
0.0125527
|
0.0072812
|
0.0172949
|
0.0120737
|
0.0112648
|
0.0112981
|
Gini standard errors for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
Texas (48)
|
48 027
|
48 029
|
48 039
|
48 041
|
48 061
|
48 085
|
48 113
|
48 121
|
48 135
|
48 139
|
48 141
|
48 157
|
48 167
|
48 201
|
48 215
|
48 245
|
48 251
|
48 303
|
48 309
|
48 329
|
48 339
|
48 355
|
48 375
|
48 381
|
48 423
|
48 439
|
48 441
|
48 453
|
48 479
|
48 485
|
48 491
|
|
2005
|
0.0015008
|
0.0097598
|
0.0059808
|
0.0155011
|
0.0167579
|
0.0144960
|
0.0071509
|
0.0047349
|
0.0086073
|
0.0187451
|
0.0138733
|
0.0086147
|
0.0079127
|
0.0113345
|
0.0039757
|
0.0108120
|
0.0128731
|
0.0139037
|
0.0121899
|
0.0143825
|
0.0157278
|
0.0090525
|
0.0125223
|
0.0216024
|
0.0194417
|
0.0151754
|
0.0042780
|
0.0141975
|
0.0060762
|
0.0154110
|
0.0149642
|
0.0084103
|
|
2006
|
0.0014567
|
0.0131066
|
0.0050773
|
0.0143166
|
0.0162170
|
0.0113399
|
0.0075697
|
0.0048353
|
0.0078879
|
0.0183872
|
0.0153351
|
0.0092036
|
0.0078507
|
0.0109745
|
0.0036627
|
0.0094095
|
0.0166690
|
0.0199327
|
0.0120888
|
0.0143673
|
0.0183975
|
0.0095703
|
0.0103662
|
0.0170302
|
0.0183612
|
0.0170160
|
0.0040660
|
0.0133233
|
0.0059814
|
0.0138634
|
0.0245756
|
0.0089157
|
|
2007
|
0.0013992
|
0.0114400
|
0.0052649
|
0.0112623
|
0.0192079
|
0.0134969
|
0.0066061
|
0.0046292
|
0.0074506
|
0.0195722
|
0.0198720
|
0.0083862
|
0.0074687
|
0.0112823
|
0.0034753
|
0.0094913
|
0.0123343
|
0.0177860
|
0.0160833
|
0.0137359
|
0.0183878
|
0.0086395
|
0.0108049
|
0.0190389
|
0.0198377
|
0.0166813
|
0.0039306
|
0.0287371
|
0.0054269
|
0.0139252
|
0.0205104
|
0.0080413
|
|
2008
|
0.0014089
|
0.0119883
|
0.0056248
|
0.0102305
|
0.0163828
|
0.0106543
|
0.0073401
|
0.0045948
|
0.0081470
|
0.0330773
|
0.0139228
|
0.0085976
|
0.0076573
|
0.0119603
|
0.0035169
|
0.0095364
|
0.0115555
|
0.0178598
|
0.0148915
|
0.0134472
|
0.0160792
|
0.0079544
|
0.0129742
|
0.0192104
|
0.0217886
|
0.0126017
|
0.0040735
|
0.0189048
|
0.0054696
|
0.0141712
|
0.0194779
|
0.0078612
|
|
2009
|
0.0013785
|
0.0111546
|
0.0055821
|
0.0113547
|
0.0144226
|
0.0116114
|
0.0068233
|
0.0044775
|
0.0074931
|
0.0197473
|
0.0186000
|
0.0079863
|
0.0073862
|
0.0107012
|
0.0034678
|
0.0097536
|
0.0120768
|
0.0271981
|
0.0126407
|
0.0152922
|
0.0194854
|
0.0078496
|
0.0089433
|
0.0176819
|
0.0174843
|
0.0171616
|
0.0037993
|
0.0174642
|
0.0059285
|
0.0144523
|
0.0198772
|
0.0076765
|
|
2010
|
0.0012696
|
0.0105210
|
0.0048345
|
0.0118737
|
0.0153442
|
0.0117173
|
0.0062211
|
0.0041777
|
0.0066441
|
0.0210219
|
0.0178633
|
0.0079571
|
0.0072077
|
0.0097562
|
0.0031699
|
0.0099591
|
0.0110905
|
0.0203340
|
0.0108907
|
0.0106003
|
0.0192587
|
0.0075095
|
0.0097807
|
0.0138128
|
0.0166727
|
0.0148526
|
0.0035745
|
0.0226591
|
0.0049857
|
0.0137460
|
0.0194701
|
0.0074553
|
|
2011
|
0.0015192
|
0.0106200
|
0.0066170
|
0.0138692
|
0.0183032
|
0.0119110
|
0.0082726
|
0.0050251
|
0.0095332
|
0.0162682
|
0.0156148
|
0.0093180
|
0.0093666
|
0.0109142
|
0.0036775
|
0.0097749
|
0.0169745
|
0.0186481
|
0.0150825
|
0.0134015
|
0.0156225
|
0.0114670
|
0.0121888
|
0.0169213
|
0.0194535
|
0.0206691
|
0.0043150
|
0.0223719
|
0.0057438
|
0.0140865
|
0.0148485
|
0.0091346
|
|
2012
|
0.0014644
|
0.0114634
|
0.0056752
|
0.0134787
|
0.0151961
|
0.0136392
|
0.0073493
|
0.0041781
|
0.0066550
|
0.0156039
|
0.0162296
|
0.0108349
|
0.0089884
|
0.0107088
|
0.0036594
|
0.0128734
|
0.0143389
|
0.0145126
|
0.0132507
|
0.0160062
|
0.0236811
|
0.0137048
|
0.0117788
|
0.0153812
|
0.0175874
|
0.0178313
|
0.0054032
|
0.0276396
|
0.0066656
|
0.0124808
|
0.0165238
|
0.0081198
|
|
2013
|
0.0014298
|
0.0163212
|
0.0050889
|
0.0101707
|
0.0159511
|
0.0128398
|
0.0068492
|
0.0045859
|
0.0071527
|
0.0178353
|
0.0150504
|
0.0095840
|
0.0089195
|
0.0113914
|
0.0035624
|
0.0109203
|
0.0143913
|
0.0158068
|
0.0141100
|
0.0137932
|
0.0190406
|
0.0110372
|
0.0112908
|
0.0386299
|
0.0257420
|
0.0132558
|
0.0057787
|
0.0169312
|
0.0062603
|
0.0132441
|
0.0175957
|
0.0084002
|
|
2014
|
0.0013878
|
0.0121673
|
0.0050560
|
0.0147965
|
0.0192857
|
0.0099823
|
0.0061246
|
0.0042803
|
0.0071287
|
0.0198991
|
0.0110505
|
0.0078605
|
0.0084261
|
0.0114797
|
0.0034199
|
0.0127966
|
0.0122847
|
0.0165844
|
0.0131145
|
0.0123558
|
0.0174441
|
0.0101347
|
0.0114480
|
0.0215077
|
0.0171926
|
0.0170459
|
0.0051507
|
0.0210663
|
0.0060422
|
0.0177155
|
0.0201234
|
0.0088164
|
|
2015
|
0.0014195
|
0.0119680
|
0.0051271
|
0.0141307
|
0.0151061
|
0.0104192
|
0.0063400
|
0.0044822
|
0.0072104
|
0.0163019
|
0.0154441
|
0.0077492
|
0.0097720
|
0.0145371
|
0.0034952
|
0.0106938
|
0.0140938
|
0.0163392
|
0.0119181
|
0.0137689
|
0.0192897
|
0.0116883
|
0.0129690
|
0.0248409
|
0.0172062
|
0.0164827
|
0.0049584
|
0.0178326
|
0.0061072
|
0.0163949
|
0.0163218
|
0.0087267
|
|
2016
|
0.0013751
|
0.0148898
|
0.0050642
|
0.0130128
|
0.0149788
|
0.0148543
|
0.0061440
|
0.0041713
|
0.0061148
|
0.0239232
|
0.0149875
|
0.0087783
|
0.0092858
|
0.0105414
|
0.0037068
|
0.0103190
|
0.0121707
|
0.0221473
|
0.0139313
|
0.0142544
|
0.0178936
|
0.0107451
|
0.0111644
|
0.0195212
|
0.0177811
|
0.0138439
|
0.0045331
|
0.0175757
|
0.0057733
|
0.0129173
|
0.0174278
|
0.0083697
|
|
2017
|
0.0014595
|
0.0112806
|
0.0050704
|
0.0207059
|
0.0154701
|
0.0117344
|
0.0063753
|
0.0041248
|
0.0066689
|
0.0219342
|
0.0128177
|
0.0080393
|
0.0086046
|
0.0116878
|
0.0037650
|
0.0092472
|
0.0138044
|
0.0131301
|
0.0117880
|
0.0130284
|
0.0188575
|
0.0149400
|
0.0100521
|
0.0191269
|
0.0153215
|
0.0135235
|
0.0049930
|
0.0154372
|
0.0066638
|
0.0131800
|
0.0193253
|
0.0079726
|
|
2018
|
0.0013717
|
0.0113240
|
0.0051520
|
0.0138984
|
0.0142449
|
0.0110294
|
0.0061962
|
0.0042549
|
0.0064950
|
0.0178975
|
0.0128197
|
0.0076692
|
0.0091028
|
0.0139766
|
0.0033791
|
0.0096787
|
0.0141291
|
0.0141373
|
0.0137758
|
0.0124982
|
0.0203657
|
0.0101394
|
0.0151138
|
0.0227757
|
0.0158462
|
0.0158906
|
0.0047909
|
0.0151325
|
0.0060794
|
0.0174833
|
0.0186168
|
0.0074358
|
Next, we observe the gini coefficients for the five most populous states (and all counties within).
# and a third loop to output ginis
for(i in c("06", "12", "36", "42", "48")){
df.state.county.wide <- county_state_gini %>%
filter(STATEFIP == i & YEAR > 2004) %>%
dplyr::select(YEAR, hh_inc, FIP, LEVEL) %>%
mutate(FIP = replace(as.character(FIP), LEVEL == "State",
first(acs_data$State[acs_data$STATEFIP == i]))) %>%
dplyr::select(YEAR, hh_inc, FIP) %>%
group_by(YEAR) %>%
pivot_wider(names_from = FIP, values_from = hh_inc)
print(kable(df.state.county.wide, caption = "Gini values for the five most populous states and their counties with complete data (2005-2018)") %>%
kable_styling() %>%
scroll_box(width = "900px", height = "500px"))
}
Gini values for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
California (6)
|
06 001
|
06 007
|
06 013
|
06 019
|
06 023
|
06 025
|
06 029
|
06 031
|
06 037
|
06 039
|
06 041
|
06 047
|
06 053
|
06 055
|
06 059
|
06 061
|
06 065
|
06 067
|
06 071
|
06 073
|
06 075
|
06 077
|
06 079
|
06 081
|
06 083
|
06 085
|
06 087
|
06 089
|
06 095
|
06 097
|
06 099
|
06 107
|
06 111
|
06 113
|
|
2005
|
0.4688495
|
0.4600084
|
0.4693296
|
0.4518016
|
0.4629645
|
0.4981256
|
0.4444868
|
0.4659109
|
0.4388620
|
0.4886109
|
0.4319333
|
0.4817535
|
0.4288500
|
0.4137013
|
0.4742795
|
0.4478635
|
0.4287467
|
0.4347674
|
0.4335318
|
0.4314090
|
0.4531117
|
0.5095203
|
0.4405206
|
0.4487058
|
0.4672796
|
0.4716024
|
0.4487527
|
0.4642045
|
0.4652230
|
0.4073103
|
0.4354989
|
0.4417255
|
0.4594434
|
0.4256266
|
0.4690752
|
|
2006
|
0.4659449
|
0.4533915
|
0.4593564
|
0.4556141
|
0.4613390
|
0.4285828
|
0.4472958
|
0.4633151
|
0.4194478
|
0.4795318
|
0.4628110
|
0.4835599
|
0.4374922
|
0.4466979
|
0.4559186
|
0.4528923
|
0.4302261
|
0.4295251
|
0.4322828
|
0.4236631
|
0.4540580
|
0.4958170
|
0.4266270
|
0.4779187
|
0.4555934
|
0.4722235
|
0.4484879
|
0.4772073
|
0.4536273
|
0.4130535
|
0.4381782
|
0.4495390
|
0.4481694
|
0.4259507
|
0.4527010
|
|
2007
|
0.4684264
|
0.4633969
|
0.4646881
|
0.4553710
|
0.4508963
|
0.4728978
|
0.4860553
|
0.4553426
|
0.3975831
|
0.4864999
|
0.4558215
|
0.4925928
|
0.4510712
|
0.4414592
|
0.4531368
|
0.4482493
|
0.4165530
|
0.4441874
|
0.4296258
|
0.4080626
|
0.4481302
|
0.5104727
|
0.4367389
|
0.4825625
|
0.4668718
|
0.4673699
|
0.4542852
|
0.4807253
|
0.4637627
|
0.3946295
|
0.4481161
|
0.4260976
|
0.4546317
|
0.4344489
|
0.4476707
|
|
2008
|
0.4719104
|
0.4612263
|
0.4567151
|
0.4571620
|
0.4651864
|
0.4942224
|
0.4756133
|
0.4607322
|
0.3836865
|
0.4896901
|
0.4584449
|
0.4810876
|
0.4524725
|
0.4355678
|
0.4621941
|
0.4540090
|
0.4168261
|
0.4321829
|
0.4228312
|
0.4353211
|
0.4559497
|
0.5142507
|
0.4455179
|
0.4347210
|
0.4698642
|
0.4602363
|
0.4480798
|
0.4772528
|
0.4657044
|
0.3909162
|
0.4552264
|
0.4311252
|
0.4358678
|
0.4341013
|
0.4641305
|
|
2009
|
0.4657316
|
0.4509934
|
0.4455267
|
0.4532065
|
0.4680720
|
0.4710221
|
0.4857174
|
0.4523221
|
0.4526668
|
0.4800524
|
0.4445564
|
0.4794456
|
0.4475788
|
0.4452510
|
0.4525777
|
0.4426721
|
0.4214813
|
0.4325420
|
0.4367569
|
0.4340413
|
0.4499076
|
0.5092592
|
0.4309899
|
0.4417961
|
0.4610728
|
0.4545971
|
0.4405417
|
0.4654810
|
0.4737649
|
0.4088567
|
0.4362320
|
0.4280466
|
0.4509956
|
0.4384945
|
0.4423270
|
|
2010
|
0.4705484
|
0.4656242
|
0.4591436
|
0.4511216
|
0.4638967
|
0.4564071
|
0.4504561
|
0.4546661
|
0.4332999
|
0.4849236
|
0.4591518
|
0.4875849
|
0.4780941
|
0.4576450
|
0.4539576
|
0.4482628
|
0.4402106
|
0.4404826
|
0.4394830
|
0.4334163
|
0.4595836
|
0.4984088
|
0.4386349
|
0.4546128
|
0.4488918
|
0.4723160
|
0.4499297
|
0.4521081
|
0.4493004
|
0.3985707
|
0.4465222
|
0.4530629
|
0.4439856
|
0.4414485
|
0.4695190
|
|
2011
|
0.4800512
|
0.4689664
|
0.4597217
|
0.4791328
|
0.4590830
|
0.4746391
|
0.4921737
|
0.4686474
|
0.4453428
|
0.4934404
|
0.4173822
|
0.5178142
|
0.4661026
|
0.4465293
|
0.4645022
|
0.4571000
|
0.4306358
|
0.4426929
|
0.4513277
|
0.4465388
|
0.4638061
|
0.5062722
|
0.4390205
|
0.4704879
|
0.4732745
|
0.4748403
|
0.4682694
|
0.4609980
|
0.4490039
|
0.4169606
|
0.4520391
|
0.4570952
|
0.4516682
|
0.4448847
|
0.4955278
|
|
2012
|
0.4804002
|
0.4740329
|
0.4756612
|
0.4641789
|
0.4831112
|
0.4744519
|
0.4717316
|
0.4528605
|
0.4708766
|
0.4928553
|
0.4724416
|
0.4957750
|
0.4588677
|
0.4319663
|
0.4531631
|
0.4639941
|
0.4170678
|
0.4472857
|
0.4610391
|
0.4365578
|
0.4639181
|
0.5189773
|
0.4591852
|
0.4590456
|
0.4767504
|
0.4646764
|
0.4595516
|
0.4766736
|
0.4254869
|
0.4322672
|
0.4570831
|
0.4499312
|
0.4622329
|
0.4435069
|
0.4744565
|
|
2013
|
0.4885798
|
0.4767079
|
0.4771901
|
0.4754311
|
0.4848486
|
0.4441967
|
0.4536215
|
0.4615412
|
0.4464091
|
0.5017938
|
0.4626037
|
0.4956892
|
0.4414015
|
0.4532200
|
0.4398917
|
0.4634728
|
0.4418782
|
0.4549107
|
0.4602252
|
0.4440001
|
0.4771520
|
0.5197961
|
0.4432091
|
0.4705443
|
0.4779405
|
0.4976590
|
0.4736131
|
0.4744201
|
0.4593596
|
0.4304027
|
0.4568358
|
0.4545834
|
0.4640850
|
0.4438400
|
0.4863766
|
|
2014
|
0.4877625
|
0.4641238
|
0.4949444
|
0.4741075
|
0.4807281
|
0.4683069
|
0.4840842
|
0.4694475
|
0.4496374
|
0.5015643
|
0.4336232
|
0.5097884
|
0.4556687
|
0.4677857
|
0.4921048
|
0.4712234
|
0.4498677
|
0.4487908
|
0.4665331
|
0.4521358
|
0.4645393
|
0.5078094
|
0.4711749
|
0.4548097
|
0.4721138
|
0.4887553
|
0.4574792
|
0.4892232
|
0.4562048
|
0.4117592
|
0.4640654
|
0.4513535
|
0.4745341
|
0.4491206
|
0.5109478
|
|
2015
|
0.4862039
|
0.4643196
|
0.4715596
|
0.4701663
|
0.4774845
|
0.4831385
|
0.4648692
|
0.4697925
|
0.4383556
|
0.4958643
|
0.4678372
|
0.5181847
|
0.4842508
|
0.4606100
|
0.4969411
|
0.4704792
|
0.4378511
|
0.4461928
|
0.4639204
|
0.4438331
|
0.4556440
|
0.5146409
|
0.4456149
|
0.4712021
|
0.4786240
|
0.4915540
|
0.4620494
|
0.4864585
|
0.4397831
|
0.4346290
|
0.4622040
|
0.4447199
|
0.4611985
|
0.4328489
|
0.4857553
|
|
2016
|
0.4890393
|
0.4638182
|
0.5021067
|
0.4570486
|
0.4962598
|
0.5038995
|
0.4955330
|
0.4676076
|
0.4106691
|
0.5023502
|
0.4426404
|
0.4966436
|
0.4701099
|
0.4504972
|
0.4687144
|
0.4658893
|
0.4644552
|
0.4509287
|
0.4606335
|
0.4430028
|
0.4611441
|
0.5063213
|
0.4548273
|
0.4528563
|
0.4772331
|
0.4754951
|
0.4636248
|
0.5026764
|
0.4799965
|
0.4311393
|
0.4421137
|
0.4448360
|
0.4612613
|
0.4421128
|
0.5179207
|
|
2017
|
0.4849602
|
0.4582281
|
0.4988304
|
0.4696606
|
0.4775850
|
0.4969116
|
0.4861718
|
0.4560915
|
0.4005768
|
0.4938627
|
0.4185932
|
0.4932594
|
0.4741553
|
0.4259763
|
0.4474976
|
0.4634659
|
0.4544596
|
0.4611439
|
0.4525249
|
0.4329679
|
0.4641113
|
0.4949222
|
0.4648664
|
0.4474887
|
0.4741280
|
0.4778310
|
0.4592460
|
0.4883889
|
0.4841743
|
0.4158705
|
0.4502656
|
0.4248691
|
0.4738346
|
0.4661473
|
0.4767718
|
|
2018
|
0.4902577
|
0.4623903
|
0.4885775
|
0.4689327
|
0.4677859
|
0.4529017
|
0.4503910
|
0.4721752
|
0.4181179
|
0.4966632
|
0.4421622
|
0.4942438
|
0.4565573
|
0.4587346
|
0.4501693
|
0.4709220
|
0.4465403
|
0.4687636
|
0.4533983
|
0.4426217
|
0.4675397
|
0.5156970
|
0.4506309
|
0.4629561
|
0.4751741
|
0.4757864
|
0.4725581
|
0.4800568
|
0.4533743
|
0.4003965
|
0.4616910
|
0.4578807
|
0.5030043
|
0.4455922
|
0.4882056
|
Gini values for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
Florida (12)
|
12 001
|
12 009
|
12 011
|
12 015
|
12 019
|
12 021
|
12 031
|
12 033
|
12 053
|
12 057
|
12 069
|
12 071
|
12 073
|
12 081
|
12 083
|
12 085
|
12 086
|
12 091
|
12 095
|
12 097
|
12 099
|
12 101
|
12 103
|
12 105
|
12 109
|
12 111
|
12 113
|
12 115
|
12 117
|
12 127
|
|
2005
|
0.4662982
|
0.5118769
|
0.4425923
|
0.4637335
|
0.4193052
|
0.4064510
|
0.4779923
|
0.4405434
|
0.4448977
|
0.4288754
|
0.4536399
|
0.4127313
|
0.4659357
|
0.4670590
|
0.4555716
|
0.4300024
|
0.4932174
|
0.5092883
|
0.4255207
|
0.4484364
|
0.4224587
|
0.4875420
|
0.4366655
|
0.4733890
|
0.4308633
|
0.4881225
|
0.4330576
|
0.4089550
|
0.4830103
|
0.4429291
|
0.4442411
|
|
2006
|
0.4651495
|
0.5297553
|
0.4432454
|
0.4689046
|
0.4298009
|
0.3525047
|
0.4919482
|
0.4503116
|
0.4628097
|
0.4120513
|
0.4625961
|
0.4294021
|
0.4472927
|
0.4789039
|
0.4374784
|
0.4222706
|
0.4950365
|
0.5009873
|
0.4300566
|
0.4467647
|
0.4074065
|
0.4767186
|
0.4317928
|
0.4731491
|
0.4279128
|
0.4747374
|
0.4237316
|
0.3995126
|
0.4745190
|
0.4650538
|
0.4760185
|
|
2007
|
0.4664357
|
0.5335513
|
0.4453654
|
0.4698043
|
0.4210614
|
0.4070258
|
0.5013921
|
0.4402847
|
0.4625081
|
0.4256266
|
0.4659203
|
0.4207409
|
0.4613912
|
0.4693113
|
0.4449901
|
0.4547946
|
0.4851095
|
0.4907658
|
0.4444262
|
0.4608681
|
0.3989338
|
0.5015597
|
0.4217385
|
0.4633786
|
0.4275182
|
0.4697974
|
0.4052052
|
0.4281749
|
0.4716362
|
0.4756168
|
0.4499165
|
|
2008
|
0.4696204
|
0.4954768
|
0.4379772
|
0.4684393
|
0.4449406
|
0.3875304
|
0.4954669
|
0.4465566
|
0.4412575
|
0.4117354
|
0.4666863
|
0.4155154
|
0.4660902
|
0.4839587
|
0.4711085
|
0.4478481
|
0.5061096
|
0.5100776
|
0.4002439
|
0.4513822
|
0.4000853
|
0.5046336
|
0.4382399
|
0.4638100
|
0.4380824
|
0.4708549
|
0.4096626
|
0.3893347
|
0.4797495
|
0.4625880
|
0.4324536
|
|
2009
|
0.4678980
|
0.5381370
|
0.4487076
|
0.4688408
|
0.4301714
|
0.3978394
|
0.4925088
|
0.4475715
|
0.4499198
|
0.4226020
|
0.4637788
|
0.4307675
|
0.4649876
|
0.5013551
|
0.4571237
|
0.4360289
|
0.5099350
|
0.4989076
|
0.4168002
|
0.4573484
|
0.4111763
|
0.4954794
|
0.4351878
|
0.4662737
|
0.4363534
|
0.4769571
|
0.4300592
|
0.4172970
|
0.4825632
|
0.4631780
|
0.4575252
|
|
2010
|
0.4719196
|
0.5230732
|
0.4478673
|
0.4772039
|
0.4388931
|
0.3887171
|
0.4964027
|
0.4462189
|
0.4701262
|
0.4283456
|
0.4767055
|
0.4126343
|
0.4710536
|
0.5033674
|
0.4635442
|
0.4267602
|
0.4885177
|
0.5094886
|
0.4206561
|
0.4620575
|
0.4093595
|
0.4910736
|
0.4338230
|
0.4733144
|
0.4302876
|
0.4958292
|
0.4465407
|
0.4367728
|
0.4644079
|
0.4604173
|
0.4512950
|
|
2011
|
0.4797610
|
0.5133793
|
0.4523250
|
0.4840054
|
0.4445324
|
0.4533889
|
0.5182418
|
0.4667940
|
0.4576707
|
0.4001654
|
0.4813351
|
0.4048630
|
0.4722473
|
0.5013382
|
0.4695368
|
0.4435791
|
0.5107082
|
0.5121869
|
0.4488407
|
0.4772738
|
0.4114087
|
0.4983746
|
0.4530790
|
0.4764571
|
0.4388881
|
0.4742000
|
0.4551199
|
0.4500045
|
0.4693735
|
0.4748199
|
0.4696828
|
|
2012
|
0.4802428
|
0.5397934
|
0.4623660
|
0.4773927
|
0.4185451
|
0.4149425
|
0.5137731
|
0.4683207
|
0.4342222
|
0.4139429
|
0.4883120
|
0.4441215
|
0.4699652
|
0.4747832
|
0.4790815
|
0.4451133
|
0.5345721
|
0.5161495
|
0.4394125
|
0.4770422
|
0.4249470
|
0.5022959
|
0.4460350
|
0.4765805
|
0.4346369
|
0.4968999
|
0.4521654
|
0.4327965
|
0.4703102
|
0.4392984
|
0.4604213
|
|
2013
|
0.4835584
|
0.5233949
|
0.4370689
|
0.4890974
|
0.4362170
|
0.4328662
|
0.5199170
|
0.4756142
|
0.4475018
|
0.4259529
|
0.4843019
|
0.4215340
|
0.4876790
|
0.4939968
|
0.4842717
|
0.4481741
|
0.5090109
|
0.5152077
|
0.4395406
|
0.4665674
|
0.4451325
|
0.5124860
|
0.4480487
|
0.4945432
|
0.4339544
|
0.5033527
|
0.4771856
|
0.4302915
|
0.4754283
|
0.4394691
|
0.4499070
|
|
2014
|
0.4820291
|
0.5197579
|
0.4487807
|
0.4762401
|
0.4569967
|
0.4187183
|
0.4978682
|
0.4763694
|
0.4228368
|
0.4314295
|
0.4747971
|
0.4596082
|
0.4687095
|
0.4821926
|
0.4600270
|
0.4358152
|
0.4994569
|
0.5209401
|
0.4310935
|
0.4873186
|
0.4257227
|
0.5042836
|
0.4395945
|
0.4918075
|
0.4378319
|
0.4883164
|
0.4330333
|
0.4479159
|
0.4881913
|
0.4684883
|
0.4535686
|
|
2015
|
0.4862335
|
0.5158600
|
0.4395528
|
0.4825052
|
0.4829386
|
0.4250703
|
0.5033641
|
0.4825310
|
0.4358850
|
0.4352802
|
0.4748685
|
0.4273104
|
0.4765823
|
0.4987816
|
0.4700147
|
0.4415520
|
0.4978626
|
0.5350054
|
0.4304847
|
0.4851314
|
0.4307348
|
0.5092302
|
0.4491935
|
0.4931334
|
0.4358018
|
0.5247812
|
0.4500077
|
0.4290336
|
0.4723121
|
0.4632568
|
0.4575149
|
|
2016
|
0.4827579
|
0.5047215
|
0.4566660
|
0.4894410
|
0.4711624
|
0.4241541
|
0.5100984
|
0.4578557
|
0.4482322
|
0.4216912
|
0.4835045
|
0.4311872
|
0.4714058
|
0.4838791
|
0.4774551
|
0.4445836
|
0.5201246
|
0.5188109
|
0.4384778
|
0.4770869
|
0.4015270
|
0.5045082
|
0.4705335
|
0.4716642
|
0.4476142
|
0.4967117
|
0.4330641
|
0.4092837
|
0.4911889
|
0.4627698
|
0.4565760
|
|
2017
|
0.4845617
|
0.5359378
|
0.4629217
|
0.4959323
|
0.4371400
|
0.4024221
|
0.5013880
|
0.4657501
|
0.4453914
|
0.4239931
|
0.4873184
|
0.4282982
|
0.4770757
|
0.4943618
|
0.4680303
|
0.4457908
|
0.5278597
|
0.5108721
|
0.4288672
|
0.4935956
|
0.4131539
|
0.5126031
|
0.4495387
|
0.4824008
|
0.4511187
|
0.4959636
|
0.4282956
|
0.4120416
|
0.4950742
|
0.4817529
|
0.4584483
|
|
2018
|
0.4866674
|
0.5315980
|
0.4388706
|
0.4895282
|
0.4644393
|
0.4094468
|
0.5151276
|
0.4777114
|
0.4590157
|
0.4564340
|
0.4843651
|
0.4394522
|
0.4877547
|
0.5092447
|
0.4726144
|
0.4673404
|
0.5281894
|
0.5124210
|
0.4544147
|
0.4816326
|
0.4296158
|
0.5219469
|
0.4500990
|
0.4840108
|
0.4378233
|
0.4869966
|
0.4452767
|
0.4509827
|
0.4825911
|
0.4511955
|
0.4588234
|
Gini values for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
New York (36)
|
36 001
|
36 005
|
36 007
|
36 013
|
36 027
|
36 029
|
36 047
|
36 055
|
36 059
|
36 061
|
36 063
|
36 065
|
36 067
|
36 071
|
36 075
|
36 081
|
36 083
|
36 085
|
36 087
|
36 089
|
36 091
|
36 093
|
36 103
|
36 111
|
36 119
|
|
2005
|
0.4952089
|
0.4636004
|
0.4944766
|
0.4334032
|
0.4394284
|
0.3991144
|
0.4534456
|
0.5021090
|
0.4591214
|
0.4393454
|
0.5844708
|
0.4334761
|
0.4292125
|
0.4484736
|
0.4165697
|
0.4015011
|
0.4222343
|
0.4203839
|
0.4566632
|
0.4312884
|
0.4296849
|
0.4186455
|
0.4371087
|
0.4156750
|
0.4286874
|
0.5193213
|
|
2006
|
0.4933160
|
0.4154548
|
0.4741583
|
0.4254948
|
0.4456231
|
0.4095887
|
0.4571647
|
0.5007483
|
0.4488030
|
0.4505856
|
0.5819396
|
0.4175359
|
0.4151725
|
0.4558830
|
0.3936826
|
0.4336323
|
0.4244628
|
0.4035475
|
0.4288735
|
0.4360937
|
0.3909200
|
0.3966098
|
0.4502688
|
0.4222432
|
0.4409213
|
0.5083998
|
|
2007
|
0.4990642
|
0.4543043
|
0.4825446
|
0.4415527
|
0.4128414
|
0.4193946
|
0.4688216
|
0.5046260
|
0.4470254
|
0.4554998
|
0.5890392
|
0.4319338
|
0.4270233
|
0.4434866
|
0.4251769
|
0.3974609
|
0.4254160
|
0.4142575
|
0.4252964
|
0.4445270
|
0.4264760
|
0.4196592
|
0.4455534
|
0.4123431
|
0.4445055
|
0.5140957
|
|
2008
|
0.5015716
|
0.4394749
|
0.4802949
|
0.4646020
|
0.4262885
|
0.4290449
|
0.4532329
|
0.5068437
|
0.4467250
|
0.4476000
|
0.5917408
|
0.4189567
|
0.4296621
|
0.4520421
|
0.4236763
|
0.4427094
|
0.4374843
|
0.4056611
|
0.4023192
|
0.4535358
|
0.4206390
|
0.3892106
|
0.4177031
|
0.4183202
|
0.4441906
|
0.5225276
|
|
2009
|
0.5017188
|
0.4520347
|
0.4815087
|
0.4377873
|
0.4306107
|
0.4170024
|
0.4753100
|
0.5103711
|
0.4451880
|
0.4462688
|
0.5856575
|
0.4513810
|
0.4271087
|
0.4382507
|
0.4153887
|
0.4221579
|
0.4392837
|
0.4176237
|
0.4460334
|
0.4604436
|
0.4103796
|
0.4160472
|
0.4073381
|
0.4220914
|
0.4437322
|
0.5171470
|
|
2010
|
0.4994055
|
0.4566402
|
0.4787023
|
0.4304483
|
0.4237741
|
0.4429048
|
0.4563717
|
0.5087707
|
0.4560508
|
0.4536962
|
0.5821564
|
0.4533061
|
0.4090606
|
0.4595392
|
0.4134734
|
0.4192820
|
0.4469182
|
0.4293731
|
0.4421371
|
0.4423814
|
0.4857305
|
0.4110259
|
0.4337462
|
0.4277964
|
0.4564143
|
0.5101878
|
|
2011
|
0.5004082
|
0.4290880
|
0.4895156
|
0.4347624
|
0.4210563
|
0.4335988
|
0.4575374
|
0.5137522
|
0.4665667
|
0.4488334
|
0.5831555
|
0.4410059
|
0.4461711
|
0.4476835
|
0.4515279
|
0.4284948
|
0.4499043
|
0.3975459
|
0.4335199
|
0.4189149
|
0.4291160
|
0.4146637
|
0.4379106
|
0.4144907
|
0.4680245
|
0.5102378
|
|
2012
|
0.4986531
|
0.4481928
|
0.5018262
|
0.4381747
|
0.4708753
|
0.4394293
|
0.4601301
|
0.5028657
|
0.4622822
|
0.4397484
|
0.5779766
|
0.4395097
|
0.4458852
|
0.4537907
|
0.4597981
|
0.4285933
|
0.4433792
|
0.4138516
|
0.4407377
|
0.4408582
|
0.4645344
|
0.4336004
|
0.4551437
|
0.4359706
|
0.4706230
|
0.5144550
|
|
2013
|
0.5095780
|
0.4820035
|
0.4890815
|
0.4509792
|
0.4207484
|
0.4241009
|
0.4575772
|
0.5226184
|
0.4725650
|
0.4634998
|
0.5816106
|
0.4329254
|
0.4363664
|
0.4703027
|
0.4538960
|
0.4309710
|
0.4573989
|
0.4263501
|
0.4638332
|
0.4704275
|
0.4471993
|
0.4303954
|
0.4421989
|
0.4423142
|
0.4512369
|
0.5202126
|
|
2014
|
0.5092288
|
0.4671211
|
0.4925597
|
0.4473312
|
0.4564552
|
0.4523699
|
0.4701968
|
0.5190189
|
0.4704774
|
0.4640429
|
0.5770308
|
0.4423736
|
0.4430590
|
0.4565157
|
0.4372260
|
0.4176862
|
0.4516253
|
0.4663811
|
0.4589623
|
0.4666029
|
0.4438501
|
0.4139258
|
0.4291102
|
0.4321750
|
0.4925886
|
0.5239092
|
|
2015
|
0.5131678
|
0.4782370
|
0.5092392
|
0.4536608
|
0.4260036
|
0.4371346
|
0.4653820
|
0.5250593
|
0.4637513
|
0.4655987
|
0.5900971
|
0.4568891
|
0.4541815
|
0.4600299
|
0.4398837
|
0.3986265
|
0.4537893
|
0.4464598
|
0.4460224
|
0.4736564
|
0.4527831
|
0.4012030
|
0.4550019
|
0.4489700
|
0.4597019
|
0.5314238
|
|
2016
|
0.5109897
|
0.4756381
|
0.4840266
|
0.4596503
|
0.4219298
|
0.4483799
|
0.4666238
|
0.5215532
|
0.4691171
|
0.4546564
|
0.5929511
|
0.4251799
|
0.4587225
|
0.4664794
|
0.4487449
|
0.4224121
|
0.4539125
|
0.4342771
|
0.4687947
|
0.4593342
|
0.4458786
|
0.4340051
|
0.4577582
|
0.4408335
|
0.4774217
|
0.5181250
|
|
2017
|
0.5133048
|
0.4585263
|
0.5133124
|
0.4613249
|
0.4420961
|
0.4556446
|
0.4587555
|
0.5280107
|
0.4749508
|
0.4649150
|
0.5815944
|
0.4352426
|
0.4460462
|
0.4689469
|
0.4194398
|
0.4096262
|
0.4502820
|
0.4410922
|
0.4706641
|
0.4690248
|
0.4390952
|
0.4250928
|
0.4357497
|
0.4448529
|
0.4552475
|
0.5288414
|
|
2018
|
0.5115166
|
0.4586359
|
0.5178579
|
0.4580445
|
0.4624724
|
0.4609191
|
0.4578533
|
0.5263126
|
0.4620414
|
0.4551944
|
0.5832261
|
0.4586955
|
0.4426298
|
0.4645254
|
0.4572869
|
0.4691333
|
0.4454277
|
0.3891778
|
0.4569851
|
0.4802346
|
0.4465775
|
0.4248937
|
0.4376227
|
0.4390459
|
0.4676449
|
0.5308130
|
Gini values for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
Pennsylvania (42)
|
42 003
|
42 007
|
42 011
|
42 017
|
42 019
|
42 021
|
42 027
|
42 029
|
42 041
|
42 043
|
42 045
|
42 049
|
42 051
|
42 055
|
42 069
|
42 071
|
42 075
|
42 077
|
42 079
|
42 085
|
42 089
|
42 091
|
42 095
|
42 101
|
42 107
|
42 125
|
42 129
|
42 133
|
|
2005
|
0.4514464
|
0.4628893
|
0.4175965
|
0.4285021
|
0.4336194
|
0.4137252
|
0.4408415
|
0.4544228
|
0.4331070
|
0.3981661
|
0.4300449
|
0.4599362
|
0.4518661
|
0.4328183
|
0.3764680
|
0.4622920
|
0.3994881
|
0.4095328
|
0.4340878
|
0.4418967
|
0.4168608
|
0.4247556
|
0.4325562
|
0.4219897
|
0.4780928
|
0.4532393
|
0.4212786
|
0.4275313
|
0.3881848
|
|
2006
|
0.4531325
|
0.4646743
|
0.4186753
|
0.3940694
|
0.4306978
|
0.4140132
|
0.4514816
|
0.4809039
|
0.4448324
|
0.3985454
|
0.4162904
|
0.4375357
|
0.4437013
|
0.4155675
|
0.3983751
|
0.4365571
|
0.4194606
|
0.3931261
|
0.4283619
|
0.4330767
|
0.4608257
|
0.4163567
|
0.4483210
|
0.4128069
|
0.4940238
|
0.4131045
|
0.4387694
|
0.4330738
|
0.3857190
|
|
2007
|
0.4604500
|
0.4901279
|
0.4278759
|
0.4248793
|
0.4215968
|
0.4340146
|
0.4325465
|
0.4700314
|
0.4318911
|
0.4001154
|
0.4296373
|
0.4527188
|
0.4338203
|
0.4324953
|
0.4183791
|
0.4346120
|
0.4057239
|
0.3951102
|
0.4177353
|
0.4451885
|
0.4114385
|
0.4218796
|
0.4613664
|
0.4042869
|
0.4892843
|
0.4200111
|
0.4269116
|
0.4471107
|
0.4194152
|
|
2008
|
0.4540986
|
0.4660654
|
0.4301395
|
0.4150875
|
0.4227379
|
0.4233507
|
0.4268557
|
0.4675304
|
0.4387746
|
0.3953876
|
0.4421539
|
0.4654976
|
0.4449048
|
0.4419460
|
0.3772350
|
0.4570222
|
0.4106627
|
0.3724373
|
0.4171875
|
0.4412178
|
0.3937538
|
0.3931553
|
0.4504329
|
0.4089870
|
0.4775583
|
0.4265020
|
0.4293442
|
0.4395573
|
0.4076876
|
|
2009
|
0.4596238
|
0.4760931
|
0.4087658
|
0.4116150
|
0.4207478
|
0.4216736
|
0.4457349
|
0.4605155
|
0.4478703
|
0.3999423
|
0.4450967
|
0.4572358
|
0.4421353
|
0.4441238
|
0.4142162
|
0.4397418
|
0.4087798
|
0.4317204
|
0.4278674
|
0.4569466
|
0.4171907
|
0.4113183
|
0.4585344
|
0.4162262
|
0.5026828
|
0.4192561
|
0.4321888
|
0.4322287
|
0.4039127
|
|
2010
|
0.4592992
|
0.4728716
|
0.4316544
|
0.4341008
|
0.4367263
|
0.3962830
|
0.4235501
|
0.4485894
|
0.4335791
|
0.4062840
|
0.4461675
|
0.4538965
|
0.4491690
|
0.4356486
|
0.3859533
|
0.4461424
|
0.4158027
|
0.4181372
|
0.4360529
|
0.4594020
|
0.4294203
|
0.4150942
|
0.4424816
|
0.4242052
|
0.5065060
|
0.4311375
|
0.4461183
|
0.4367472
|
0.4075516
|
|
2011
|
0.4604582
|
0.4647336
|
0.4444540
|
0.4282273
|
0.4313488
|
0.4589037
|
0.4288394
|
0.4821385
|
0.4417610
|
0.4035702
|
0.4457770
|
0.4649789
|
0.4567813
|
0.4176904
|
0.3914474
|
0.4367494
|
0.3963248
|
0.4217361
|
0.4479998
|
0.4541137
|
0.4526434
|
0.4213366
|
0.4530066
|
0.4360835
|
0.5095452
|
0.4176211
|
0.4419125
|
0.4336836
|
0.4215794
|
|
2012
|
0.4641501
|
0.4657553
|
0.4387584
|
0.4521747
|
0.4391813
|
0.4375898
|
0.4556047
|
0.4648492
|
0.4558239
|
0.4339125
|
0.4497556
|
0.4785966
|
0.4526240
|
0.4493364
|
0.4038092
|
0.4506039
|
0.4090630
|
0.4159925
|
0.4194014
|
0.4652340
|
0.4118916
|
0.4110049
|
0.4615360
|
0.4236182
|
0.5084244
|
0.4048453
|
0.4394033
|
0.4398110
|
0.4232561
|
|
2013
|
0.4691303
|
0.4780590
|
0.4267015
|
0.4306433
|
0.4481572
|
0.4621339
|
0.4512283
|
0.4564970
|
0.4569790
|
0.4237828
|
0.4381689
|
0.4821518
|
0.4671380
|
0.4429662
|
0.3919405
|
0.4473172
|
0.4100015
|
0.4355367
|
0.4616397
|
0.4594845
|
0.4360970
|
0.4270553
|
0.4761837
|
0.4521006
|
0.5134508
|
0.4435501
|
0.4481330
|
0.4563585
|
0.4322294
|
|
2014
|
0.4673423
|
0.4815841
|
0.4558988
|
0.4296465
|
0.4399495
|
0.4547086
|
0.4741864
|
0.4952571
|
0.4483872
|
0.4143819
|
0.4624807
|
0.4780905
|
0.4602145
|
0.4519943
|
0.4220604
|
0.4566165
|
0.4251133
|
0.3843187
|
0.4474251
|
0.4390270
|
0.4257576
|
0.4042321
|
0.4615735
|
0.4551983
|
0.5040200
|
0.4175845
|
0.4609805
|
0.4528139
|
0.4177360
|
|
2015
|
0.4689562
|
0.4903643
|
0.4521031
|
0.4583402
|
0.4498200
|
0.4284430
|
0.4194093
|
0.4628520
|
0.4503371
|
0.4163272
|
0.4294598
|
0.4607405
|
0.4454759
|
0.4760602
|
0.3978500
|
0.4696347
|
0.4492984
|
0.4273085
|
0.4486471
|
0.4499324
|
0.4324267
|
0.4157166
|
0.4694264
|
0.4333849
|
0.5025395
|
0.4510916
|
0.4515572
|
0.4568148
|
0.3902636
|
|
2016
|
0.4672412
|
0.4745718
|
0.4494688
|
0.4383262
|
0.4444719
|
0.4339385
|
0.4262145
|
0.4933007
|
0.4531129
|
0.3939501
|
0.4357797
|
0.4762104
|
0.4483572
|
0.4342475
|
0.4193069
|
0.4627230
|
0.4295779
|
0.4100033
|
0.4585561
|
0.4555975
|
0.4301787
|
0.3915314
|
0.4589260
|
0.4108742
|
0.5170839
|
0.4260180
|
0.4715809
|
0.4425568
|
0.3948436
|
|
2017
|
0.4763948
|
0.4864003
|
0.4486887
|
0.4569592
|
0.4553929
|
0.4479544
|
0.4412837
|
0.4755407
|
0.4426722
|
0.4193100
|
0.4438242
|
0.4801469
|
0.4708041
|
0.4258338
|
0.3997618
|
0.4451309
|
0.4083487
|
0.4173470
|
0.4785429
|
0.4531486
|
0.4324168
|
0.4353773
|
0.4598905
|
0.4699987
|
0.5604323
|
0.4131257
|
0.4659292
|
0.4514598
|
0.4120939
|
|
2018
|
0.4716892
|
0.4858082
|
0.4247899
|
0.4377716
|
0.4437065
|
0.4685284
|
0.4292354
|
0.4789302
|
0.4483041
|
0.4303404
|
0.4679560
|
0.4925817
|
0.4614667
|
0.4502859
|
0.4075370
|
0.4277375
|
0.4132332
|
0.3971601
|
0.4569904
|
0.4258253
|
0.4494706
|
0.4231629
|
0.4583039
|
0.4394510
|
0.5306395
|
0.4544152
|
0.4546837
|
0.4434057
|
0.4381259
|
Gini values for the five most populous states and their counties with complete data (2005-2018)
|
YEAR
|
Texas (48)
|
48 027
|
48 029
|
48 039
|
48 041
|
48 061
|
48 085
|
48 113
|
48 121
|
48 135
|
48 139
|
48 141
|
48 157
|
48 167
|
48 201
|
48 215
|
48 245
|
48 251
|
48 303
|
48 309
|
48 329
|
48 339
|
48 355
|
48 375
|
48 381
|
48 423
|
48 439
|
48 441
|
48 453
|
48 479
|
48 485
|
48 491
|
|
2005
|
0.4725611
|
0.4062352
|
0.4668360
|
0.4455865
|
0.5457543
|
0.5289417
|
0.4273424
|
0.4821671
|
0.4276108
|
0.4633725
|
0.3786066
|
0.4740221
|
0.4419462
|
0.4376861
|
0.4807235
|
0.4933015
|
0.4548140
|
0.4173098
|
0.4724586
|
0.4648797
|
0.4725233
|
0.4717412
|
0.4485557
|
0.4835068
|
0.4410594
|
0.4850489
|
0.4428689
|
0.4279504
|
0.4853962
|
0.4732561
|
0.4173852
|
0.4415051
|
|
2006
|
0.4721527
|
0.4448196
|
0.4506713
|
0.4270277
|
0.5201798
|
0.4902727
|
0.4293180
|
0.4824448
|
0.4259355
|
0.4261447
|
0.4060170
|
0.4824156
|
0.4535291
|
0.4429791
|
0.4811909
|
0.4912886
|
0.5105645
|
0.4042981
|
0.4651207
|
0.4599087
|
0.5204884
|
0.4643900
|
0.4722764
|
0.4546914
|
0.4428624
|
0.4634870
|
0.4452919
|
0.4040034
|
0.4808771
|
0.4620501
|
0.5280957
|
0.4377457
|
|
2007
|
0.4717420
|
0.4126567
|
0.4614186
|
0.4199362
|
0.5409961
|
0.4916261
|
0.4032559
|
0.4885284
|
0.4150233
|
0.4631576
|
0.4214058
|
0.4867329
|
0.4478461
|
0.4643482
|
0.4876793
|
0.4810001
|
0.4709150
|
0.4124913
|
0.4683518
|
0.4719921
|
0.5126624
|
0.4646431
|
0.4635370
|
0.4626271
|
0.4616135
|
0.4789234
|
0.4423603
|
0.4417783
|
0.4745225
|
0.4566852
|
0.4497759
|
0.4223645
|
|
2008
|
0.4736132
|
0.4198571
|
0.4739939
|
0.4155224
|
0.5175674
|
0.4805647
|
0.4240719
|
0.4949053
|
0.4255393
|
0.4777250
|
0.4000137
|
0.4697591
|
0.4397188
|
0.4513986
|
0.4848759
|
0.5014227
|
0.4450167
|
0.4206920
|
0.4783361
|
0.4842460
|
0.4594670
|
0.4405884
|
0.4790118
|
0.4918107
|
0.4655813
|
0.4432575
|
0.4439937
|
0.4716392
|
0.4877434
|
0.4593149
|
0.4314318
|
0.4351893
|
|
2009
|
0.4741431
|
0.4397842
|
0.4667427
|
0.4057392
|
0.5380215
|
0.5057988
|
0.4339656
|
0.4932202
|
0.4220748
|
0.4507466
|
0.4117835
|
0.4619330
|
0.4516087
|
0.4602350
|
0.4841213
|
0.4958854
|
0.4751174
|
0.4437399
|
0.4739842
|
0.4846475
|
0.4890287
|
0.4612776
|
0.4580358
|
0.4515148
|
0.4259194
|
0.4992373
|
0.4474292
|
0.4326879
|
0.4830028
|
0.4451838
|
0.4530798
|
0.4110129
|
|
2010
|
0.4680554
|
0.4028374
|
0.4551174
|
0.4226638
|
0.5357907
|
0.4825340
|
0.4282524
|
0.4814411
|
0.4246279
|
0.4933587
|
0.4460716
|
0.4722556
|
0.4506407
|
0.4496728
|
0.4787602
|
0.4853723
|
0.4579012
|
0.4056721
|
0.4710248
|
0.4457113
|
0.4812277
|
0.4539858
|
0.4573440
|
0.4241250
|
0.4122847
|
0.4783565
|
0.4448904
|
0.4733599
|
0.4821228
|
0.4750433
|
0.4518809
|
0.4270860
|
|
2011
|
0.4753711
|
0.4205514
|
0.4647780
|
0.4313874
|
0.5449617
|
0.4902305
|
0.4251258
|
0.4870967
|
0.4172637
|
0.4292024
|
0.3996370
|
0.4700769
|
0.4376574
|
0.4457474
|
0.4928160
|
0.4911119
|
0.4836707
|
0.3906052
|
0.5021514
|
0.4880708
|
0.4617506
|
0.4724847
|
0.4742913
|
0.4708515
|
0.4750636
|
0.4999504
|
0.4482216
|
0.4706051
|
0.4916968
|
0.4399121
|
0.4258286
|
0.4407735
|
|
2012
|
0.4747593
|
0.4322034
|
0.4662438
|
0.4295114
|
0.5413956
|
0.4961087
|
0.4294158
|
0.4841338
|
0.4187328
|
0.4236378
|
0.4034737
|
0.4902515
|
0.4161310
|
0.4402575
|
0.4938911
|
0.5026877
|
0.4899427
|
0.3820759
|
0.4838235
|
0.4708990
|
0.4800470
|
0.4736719
|
0.4511267
|
0.4752309
|
0.4175149
|
0.4697975
|
0.4519454
|
0.5090438
|
0.4907758
|
0.4715126
|
0.4399136
|
0.3792024
|
|
2013
|
0.4791761
|
0.4271334
|
0.4616772
|
0.3994821
|
0.5284422
|
0.5001004
|
0.4339077
|
0.5050554
|
0.4280078
|
0.4539033
|
0.4201986
|
0.4719378
|
0.4414118
|
0.4683559
|
0.4949687
|
0.4905649
|
0.4965417
|
0.4141874
|
0.4839182
|
0.4805917
|
0.4730999
|
0.4620716
|
0.4484441
|
0.5198347
|
0.4382044
|
0.4551959
|
0.4636453
|
0.4420492
|
0.4820351
|
0.4901135
|
0.4642417
|
0.4095190
|
|
2014
|
0.4817846
|
0.4298030
|
0.4708206
|
0.4210176
|
0.5159521
|
0.4843012
|
0.4249283
|
0.4984778
|
0.4477246
|
0.4507571
|
0.4008264
|
0.4637352
|
0.4293677
|
0.4775389
|
0.4974368
|
0.5060825
|
0.4964237
|
0.4400655
|
0.4858896
|
0.4755632
|
0.4732104
|
0.4819724
|
0.4613422
|
0.4694182
|
0.4387824
|
0.4727916
|
0.4648894
|
0.4781956
|
0.4887124
|
0.4968575
|
0.4822031
|
0.4034334
|
|
2015
|
0.4818033
|
0.4487661
|
0.4624428
|
0.4456395
|
0.5167429
|
0.4882194
|
0.4293600
|
0.5008844
|
0.4374480
|
0.4406296
|
0.4190004
|
0.4407127
|
0.4409851
|
0.4823705
|
0.4956904
|
0.5057590
|
0.4639867
|
0.4318852
|
0.4709072
|
0.4799792
|
0.4658036
|
0.4906743
|
0.4830385
|
0.4759411
|
0.4375245
|
0.4736834
|
0.4687712
|
0.4761751
|
0.4954431
|
0.4843383
|
0.4456764
|
0.4035074
|
|
2016
|
0.4787102
|
0.4391662
|
0.4612196
|
0.4180360
|
0.5430912
|
0.4989984
|
0.4333602
|
0.4860391
|
0.4386316
|
0.4730189
|
0.4139604
|
0.4567746
|
0.4447311
|
0.4781717
|
0.4976582
|
0.4979466
|
0.4905667
|
0.4069081
|
0.5010610
|
0.4880409
|
0.4756049
|
0.4890675
|
0.4553910
|
0.4684209
|
0.4511856
|
0.4489812
|
0.4526118
|
0.4429837
|
0.4771805
|
0.5085240
|
0.4584048
|
0.4022186
|
|
2017
|
0.4763822
|
0.4241634
|
0.4651383
|
0.4350992
|
0.5066398
|
0.4897964
|
0.4298625
|
0.4840179
|
0.4321570
|
0.4140610
|
0.3974054
|
0.4634494
|
0.4361459
|
0.4585956
|
0.4964401
|
0.4910466
|
0.4821459
|
0.3733873
|
0.5058372
|
0.4710131
|
0.4313703
|
0.4831099
|
0.4723959
|
0.4663925
|
0.4258166
|
0.4671403
|
0.4528570
|
0.4573214
|
0.4758998
|
0.4610231
|
0.4906793
|
0.4054541
|
|
2018
|
0.4799454
|
0.4197029
|
0.4728724
|
0.4331879
|
0.5238015
|
0.4743535
|
0.4388566
|
0.4886704
|
0.4349589
|
0.4387302
|
0.3802584
|
0.4751484
|
0.4360878
|
0.4835420
|
0.4949773
|
0.4935264
|
0.5006952
|
0.4086477
|
0.4808871
|
0.4678293
|
0.4596877
|
0.4689415
|
0.4678044
|
0.5014638
|
0.4132385
|
0.4802610
|
0.4589642
|
0.4459782
|
0.4881870
|
0.4719877
|
0.4719481
|
0.3914748
|
Finally, we want to get a sense of trends at the state and county levels. Considering the restricted sample of the five most populous states (CA, FL, NY, PA, and TX), the following analysis describes the trends for the “average” state and county. The Hodrick-Prescott filter models the trend by obtaining filter weights \(\hat{\beta_{j}} = argmin E[(y_t - \hat{y_t}^2]\), where the filter, \(B(L)\), is a function of weights and a lag operator \(L\): \(B(L) = \sum_{j=-\infty}^{\infty}B_jL^j\), and \(L^kx_t = x_{t-k}\). The filter is used in the model \(y_t = B(L)x_t\) to predict time series outcomes.
####### join county and state estimates
ggplot(county_state_gini, aes(x = YEAR, y = hh_inc, color = LEVEL)) +
geom_point() +
facet_wrap(~LEVEL) +
labs(title = "Gini estimates at the state and county levels, calculated using PUMA-constructed counties (2005-2018)")

county_state_ts <- county_state_gini %>%
group_by(YEAR, LEVEL) %>%
summarise(gini = mean(hh_inc))
state_ts <- ts(county_state_ts[county_state_ts$LEVEL == "State", "gini"],
start = 2005, end = 2018)
county_ts <- ts(county_state_ts[county_state_ts$LEVEL == "County", "gini"],
start = 2005, end = 2018)
state.hp <- hpfilter(state_ts)
county.hp <- hpfilter(county_ts)
plot(state.hp)

For the five most populous states, we notice a rise in inequality from close to 2008 through 2018. The total increase is roughly 0.02 points, which appears similar to the county level increase.
plot(county.hp)

At the county level, the trend is similar, but flattens in the latter years. Whereas the state level time-series peaks at 2018, the county level time-series peaks at 2014.