Import data loan_kiva pada folder data_input kemudian berikan nama object sebagai kiva:
kiva = read.csv("data_input/loan_kiva.csv")Berikut ini adalah deskripsi dari variabel data kiva:
id: Unique ID for loan (Loan ID)funded_amount: The amount disbursed by Kiva to the field agent(USD)loan_amount: The amount disbursed by the field agent to the borrower(USD)activity: More granular categorysector: High level categorycountry: Full country name of country in which loan was disbursedregion: Full region name within the countrycurrency: The currency in which the loan was disbursedpartner_id: ID of partner organizationposted_time: The time at which the loan is posted on Kiva by the field agentfunded_time: The time at which the loan posted to Kiva gets funded by lenders completelyterm_in_months: The duration for which the loan was disbursed in monthslender_count: The total number of lenders that contributed to this loanrepayment_interval: Interval for the repayment of the loaninspect 6 data pertama
head(kiva)Missing value
Cek kelengkapan data, apakah terdapat missing value?
anyNA(kiva)## [1] FALSE
Hasil False maka tidak terdapat missing value pada kiva.csv. Untuk melihat apakah setiap kolom terdapat missing value, digunakan colSums(is.na(nama_object)).
colSums(is.na(kiva))## id funded_amount loan_amount activity
## 0 0 0 0
## sector country region currency
## 0 0 0 0
## partner_id posted_time funded_time term_in_months
## 0 0 0 0
## lender_count repayment_interval
## 0 0
Cek structure data
str(kiva)## 'data.frame': 323279 obs. of 14 variables:
## $ id : int 653051 653053 653068 653063 653084 653067 653078 653082 653048 653060 ...
## $ funded_amount : num 300 575 150 200 400 200 400 475 625 200 ...
## $ loan_amount : num 300 575 150 200 400 200 400 475 625 200 ...
## $ activity : Factor w/ 154 levels "Adult Care","Agriculture",..: 62 127 140 50 90 42 11 87 60 127 ...
## $ sector : Factor w/ 15 levels "Agriculture",..: 7 14 14 2 7 1 13 10 7 14 ...
## $ country : Factor w/ 82 levels "Afghanistan",..: 52 52 27 52 52 27 52 52 52 52 ...
## $ region : Factor w/ 9204 levels "","\"\"The first May\"\" village",..: 4377 4377 5172 4377 115 5172 2645 4377 4377 4377 ...
## $ currency : Factor w/ 66 levels "ALL","AMD","AZN",..: 44 44 22 44 44 22 44 44 44 44 ...
## $ partner_id : int 247 247 334 247 245 334 245 245 247 247 ...
## $ posted_time : Factor w/ 322089 levels "2014-01-01 04:49:26",..: 5 7 22 17 38 21 32 36 2 14 ...
## $ funded_time : Factor w/ 261846 levels "2014-01-01 12:18:55",..: 63 60 7 3 18 11 1138 15 204 1 ...
## $ term_in_months : int 12 11 43 11 14 43 14 14 11 11 ...
## $ lender_count : int 12 14 6 8 16 8 8 19 24 3 ...
## $ repayment_interval: Factor w/ 3 levels "bullet","irregular",..: 2 2 1 2 3 1 3 3 2 2 ...
Apabila data bersifat unique, penggunaan integer sudah tepat. Apabila data bersifat berulang, penggunaannya adalah factor.
Perbaiki tipe data yang belum sesuai
funded_time
posted_time
Mengubah tipe data ke tipe date dapat menggunakan as.Date(). Pertama-tama, cek format tanggal pada variabel tersebut.
tail(kiva)Format tanggal:
%Y: untuk tahun dengan 4 digit
%y: untuk tahun dengan 2 digit
%m: untuk bulan dengan angka
%b: untuk bulan dengan nama bulan “January”
%d: untuk tanggal 2 digit
Mengubah tipe date
kiva$posted_time = as.Date(kiva$posted_time, format = "%Y-%m-%d %H:%M:%S")
class(kiva$posted_time)## [1] "Date"
kiva$funded_time = as.Date(kiva$funded_time, format = "%Y-%m-%d %H:%M:%S")
class(kiva$funded_time)## [1] "Date"
Apabila salah dalam format tanggal, akan menjadi missing value.
Lakukan feature engineering, buatlah kolom baru bernama range_time yang diperoleh dari selisih funded_time dan posted_time
kiva$range_time = kiva$funded_time - kiva$posted_time
head(kiva)Membuat kolom funded_month dari variable funded_time
kiva$funded_month = months(kiva$funded_time, abbreviate = T)Inspect data
head(kiva)Mengubah Susuan Kolom Menggunakan Base R
#kiva[,c("loan_amount","funded_amount")]Ada package untuk hal tersebut namun dipelajari minggu depan hehehe sabar yakk.
Untuk memperoleh summary data gunakan function summary()
summary(kiva)## id funded_amount loan_amount
## Min. : 653047 Min. : 25.0 Min. : 25.0
## 1st Qu.: 737420 1st Qu.: 275.0 1st Qu.: 275.0
## Median : 827056 Median : 500.0 Median : 500.0
## Mean : 826774 Mean : 828.8 Mean : 828.8
## 3rd Qu.: 915291 3rd Qu.: 1000.0 3rd Qu.: 1000.0
## Max. :1002884 Max. :100000.0 Max. :100000.0
##
## activity sector country
## Farming : 33610 Agriculture:86509 Philippines: 81199
## General Store : 31087 Food :68752 Kenya : 31947
## Personal Housing Expenses: 15616 Retail :62118 El Salvador: 20543
## Agriculture : 14309 Services :20550 Cambodia : 13402
## Food Production/Sales : 13950 Housing :16318 Peru : 12799
## Retail : 13728 Clothing :15840 Uganda : 11832
## (Other) :200979 (Other) :53192 (Other) :151557
## region currency partner_id posted_time
## : 26253 PHP : 81199 Min. : 9.0 Min. :2014-01-01
## Kaduna : 5466 USD : 52751 1st Qu.:125.0 1st Qu.:2014-07-11
## Lahore : 4322 KES : 31467 Median :145.0 Median :2015-01-12
## Kisii : 3324 PEN : 12225 Mean :166.7 Mean :2015-01-08
## Cusco : 3013 UGX : 11772 3rd Qu.:199.0 3rd Qu.:2015-07-09
## Thanh Hoá: 2099 PKR : 11647 Max. :469.0 Max. :2015-12-31
## (Other) :278802 (Other):122218
## funded_time term_in_months lender_count repayment_interval
## Min. :2014-01-01 Min. : 2.0 Min. : 1.00 bullet : 32653
## 1st Qu.:2014-07-24 1st Qu.: 8.0 1st Qu.: 8.00 irregular:130580
## Median :2015-01-24 Median : 13.0 Median : 15.00 monthly :160046
## Mean :2015-01-23 Mean : 13.9 Mean : 22.85
## 3rd Qu.:2015-07-24 3rd Qu.: 14.0 3rd Qu.: 28.00
## Max. :2016-02-25 Max. :158.0 Max. :2986.00
##
## range_time funded_month
## Length:323279 Length:323279
## Class :difftime Class :character
## Mode :numeric Mode :character
##
##
##
##
Mengubah Tipe Data Funded_month Menjadi Factor
kiva$funded_month = as.factor(kiva$funded_month)
summary(kiva)## id funded_amount loan_amount
## Min. : 653047 Min. : 25.0 Min. : 25.0
## 1st Qu.: 737420 1st Qu.: 275.0 1st Qu.: 275.0
## Median : 827056 Median : 500.0 Median : 500.0
## Mean : 826774 Mean : 828.8 Mean : 828.8
## 3rd Qu.: 915291 3rd Qu.: 1000.0 3rd Qu.: 1000.0
## Max. :1002884 Max. :100000.0 Max. :100000.0
##
## activity sector country
## Farming : 33610 Agriculture:86509 Philippines: 81199
## General Store : 31087 Food :68752 Kenya : 31947
## Personal Housing Expenses: 15616 Retail :62118 El Salvador: 20543
## Agriculture : 14309 Services :20550 Cambodia : 13402
## Food Production/Sales : 13950 Housing :16318 Peru : 12799
## Retail : 13728 Clothing :15840 Uganda : 11832
## (Other) :200979 (Other) :53192 (Other) :151557
## region currency partner_id posted_time
## : 26253 PHP : 81199 Min. : 9.0 Min. :2014-01-01
## Kaduna : 5466 USD : 52751 1st Qu.:125.0 1st Qu.:2014-07-11
## Lahore : 4322 KES : 31467 Median :145.0 Median :2015-01-12
## Kisii : 3324 PEN : 12225 Mean :166.7 Mean :2015-01-08
## Cusco : 3013 UGX : 11772 3rd Qu.:199.0 3rd Qu.:2015-07-09
## Thanh Hoá: 2099 PKR : 11647 Max. :469.0 Max. :2015-12-31
## (Other) :278802 (Other):122218
## funded_time term_in_months lender_count repayment_interval
## Min. :2014-01-01 Min. : 2.0 Min. : 1.00 bullet : 32653
## 1st Qu.:2014-07-24 1st Qu.: 8.0 1st Qu.: 8.00 irregular:130580
## Median :2015-01-24 Median : 13.0 Median : 15.00 monthly :160046
## Mean :2015-01-23 Mean : 13.9 Mean : 22.85
## 3rd Qu.:2015-07-24 3rd Qu.: 14.0 3rd Qu.: 28.00
## Max. :2016-02-25 Max. :158.0 Max. :2986.00
##
## range_time funded_month
## Length:323279 Dec : 33365
## Class :difftime Mar : 30336
## Mode :numeric Jul : 29902
## Oct : 28250
## Nov : 27443
## Aug : 26284
## (Other):147699
class(kiva$loan_amount)
class(kiva$funded_amount)
#kiva[kiva$funded_amount == kiva$loan_amount, ]
levels(kiva$sector)
kiva[kiva$sector == "Retail" & kiva$loan_amount > 1000, ]Penggunaan () digunakan untuk function. Penggunaan [] digunakan untuk kondisi/subset dengan format [row, column].
funded_amount menampilkan informasi yang sama dengan variabel loan_amount untuk semua observasi?nrow(kiva[kiva$funded_amount == kiva$loan_amount, ])## [1] 323279
loan_amount lebih rendah dari 500kiva[kiva$range_time > 30 & kiva$loan_amount < 500, ]bulletkiva[kiva$repayment_interval == "bullet", c("sector","country", "repayment_interval") ]fnb <- c("Beverages","Cafe","Catering","Food", "Restaurant")# Cara 2
kiva[kiva$activity %in% fnb, ]data2 = kiva[kiva$activity %in% fnb, ]
data2$activity = droplevels(data2$activity)
levels(data2$activity)## [1] "Beverages" "Cafe" "Catering" "Food" "Restaurant"
Menggunakan package stringr
library(stringr)
kiva[str_detect(string = kiva$activity, pattern = c("Beverages")), ]dat <- c("Wisma Asia","BLI Sentul","Menara BCA", "Pondok Indah", "Bekasi")
set.seed(1)
# Set.seed membuat sampling random tetap menghasilkan sample yang sama. 1 itu angka apa?
sample(dat,3)## [1] "Wisma Asia" "Pondok Indah" "Menara BCA"
Lakukan sampling untuk 5 observasi data kiva
set.seed(1)
data_5 = kiva[sample(nrow(kiva), 5), ]Untuk Menyimpan Data CSV
write.csv(data_5,file = "data_input/datakiva5.csv", row.names = F)
#Penggunaan rownames F menyebabkan index row tidak tergenerate dalam csv.Penambahan eval = F pada chunk menimbulkan ketika knit, data observasi tidak tercetak semua.
table() akan menampilkan frekuensi tiap kategori dari data
Tampilkan banyaknya pinjaman pada data kiva dari masing-masing sector
table(kiva$sector)##
## Agriculture Arts Clothing Construction Education
## 86509 5324 15840 3377 15752
## Entertainment Food Health Housing Manufacturing
## 373 68752 3686 16318 3656
## Personal Use Retail Services Transportation Wholesale
## 12836 62118 20550 7831 357
Tampilkan proporsi dari masing-masing sector
prop.table(table(kiva$sector))##
## Agriculture Arts Clothing Construction Education
## 0.267598576 0.016468747 0.048997924 0.010446085 0.048725714
## Entertainment Food Health Housing Manufacturing
## 0.001153802 0.212670789 0.011401916 0.050476523 0.011309117
## Personal Use Retail Services Transportation Wholesale
## 0.039705641 0.192149815 0.063567383 0.024223658 0.001104309
round(prop.table(table(kiva$sector)) ,2)##
## Agriculture Arts Clothing Construction Education
## 0.27 0.02 0.05 0.01 0.05
## Entertainment Food Health Housing Manufacturing
## 0.00 0.21 0.01 0.05 0.01
## Personal Use Retail Services Transportation Wholesale
## 0.04 0.19 0.06 0.02 0.00
Tampilkan proporsi tipe pembayaran yang dipilih peminjam
round(prop.table(table(kiva$repayment_interval)),2)##
## bullet irregular monthly
## 0.1 0.4 0.5
Mengurutkan Table dari yang Terbesar Hingga yang Terkecil
Cara 1
sort(round(prop.table(table(kiva$sector)) ,2), decreasing = T)##
## Agriculture Food Retail Services Clothing
## 0.27 0.21 0.19 0.06 0.05
## Education Housing Personal Use Arts Transportation
## 0.05 0.05 0.04 0.02 0.02
## Construction Health Manufacturing Entertainment Wholesale
## 0.01 0.01 0.01 0.00 0.00
Cara 2
table_sector = data.frame(round(prop.table(table(kiva$sector)) ,2))
table_sectortable_sector[order(table_sector$Freq, decreasing = T), ]head(table_sector[order(table_sector$Freq, decreasing = T), ],3)table(kiva$funded_month, kiva$sector)##
## Agriculture Arts Clothing Construction Education Entertainment Food
## Apr 6340 396 1214 262 917 18 5010
## Aug 7809 492 1249 247 1279 40 5338
## Dec 8486 570 1623 322 2145 40 6800
## Feb 5521 365 1118 262 1226 32 5233
## Jan 5906 319 1341 254 1112 30 5344
## Jul 8391 383 1477 315 1296 25 6168
## Jun 7878 426 1166 299 1142 21 5274
## Mar 8091 491 1425 335 1227 27 6703
## May 7464 441 1342 288 1029 28 5400
## Nov 6612 511 1305 237 1438 36 5936
## Oct 7190 434 1367 277 1552 31 5953
## Sep 6821 496 1213 279 1389 45 5593
##
## Health Housing Manufacturing Personal Use Retail Services Transportation
## Apr 197 1147 316 639 4487 1541 578
## Aug 311 1278 277 935 4860 1615 533
## Dec 583 1529 350 2412 5785 1965 721
## Feb 239 1089 333 554 4333 1551 620
## Jan 297 1089 234 857 4721 1690 676
## Jul 335 1708 270 927 5972 1926 679
## Jun 243 1497 303 633 4896 1707 625
## Mar 299 1596 347 825 6077 2018 841
## May 298 1433 288 574 4898 1790 635
## Nov 293 1286 296 1821 5436 1560 646
## Oct 317 1408 320 1387 5669 1639 664
## Sep 274 1258 322 1272 4984 1548 613
##
## Wholesale
## Apr 29
## Aug 21
## Dec 34
## Feb 30
## Jan 20
## Jul 30
## Jun 40
## Mar 34
## May 27
## Nov 30
## Oct 42
## Sep 20
round(prop.table(table(kiva$funded_month, kiva$sector)),2)##
## Agriculture Arts Clothing Construction Education Entertainment Food
## Apr 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Aug 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Dec 0.03 0.00 0.01 0.00 0.01 0.00 0.02
## Feb 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Jan 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Jul 0.03 0.00 0.00 0.00 0.00 0.00 0.02
## Jun 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Mar 0.03 0.00 0.00 0.00 0.00 0.00 0.02
## May 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Nov 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Oct 0.02 0.00 0.00 0.00 0.00 0.00 0.02
## Sep 0.02 0.00 0.00 0.00 0.00 0.00 0.02
##
## Health Housing Manufacturing Personal Use Retail Services Transportation
## Apr 0.00 0.00 0.00 0.00 0.01 0.00 0.00
## Aug 0.00 0.00 0.00 0.00 0.02 0.00 0.00
## Dec 0.00 0.00 0.00 0.01 0.02 0.01 0.00
## Feb 0.00 0.00 0.00 0.00 0.01 0.00 0.00
## Jan 0.00 0.00 0.00 0.00 0.01 0.01 0.00
## Jul 0.00 0.01 0.00 0.00 0.02 0.01 0.00
## Jun 0.00 0.00 0.00 0.00 0.02 0.01 0.00
## Mar 0.00 0.00 0.00 0.00 0.02 0.01 0.00
## May 0.00 0.00 0.00 0.00 0.02 0.01 0.00
## Nov 0.00 0.00 0.00 0.01 0.02 0.00 0.00
## Oct 0.00 0.00 0.00 0.00 0.02 0.01 0.00
## Sep 0.00 0.00 0.00 0.00 0.02 0.00 0.00
##
## Wholesale
## Apr 0.00
## Aug 0.00
## Dec 0.00
## Feb 0.00
## Jan 0.00
## Jul 0.00
## Jun 0.00
## Mar 0.00
## May 0.00
## Nov 0.00
## Oct 0.00
## Sep 0.00
data.frame(round(prop.table(table(kiva$funded_month, kiva$sector)),2))xtab() menampilkan jumlah variabel numerik untuk tiap kategori.
xtab(formula=..., data=...)
Table = yang dicari frekuensinya Crosstab = bisa memasukkan variabel numeriknya Aggregate = summary bisa dihitung
Ket:
data = data yang digunakan
Tampilkan loan amount berdasarkan sector dan repayment_interval
xtabs(formula = kiva$loan_amount ~ kiva$sector + kiva$repayment_interval)## kiva$repayment_interval
## kiva$sector bullet irregular monthly
## Agriculture 17032775 13625400 37422300
## Arts 817925 1715400 3090800
## Clothing 265100 7640325 9891725
## Construction 82225 730000 2655725
## Education 925125 2967025 11616425
## Entertainment 30425 66075 307350
## Food 1544775 28533200 28181500
## Health 62525 1473250 2764825
## Housing 299300 1185175 9972950
## Manufacturing 217375 987525 2015125
## Personal Use 1130575 757100 4566300
## Retail 1559975 24151100 21039750
## Services 1522500 5781500 13531175
## Transportation 117550 1731575 3384825
## Wholesale 57325 153225 336950
xtabs(formula = loan_amount ~ sector + repayment_interval ,data = kiva)## repayment_interval
## sector bullet irregular monthly
## Agriculture 17032775 13625400 37422300
## Arts 817925 1715400 3090800
## Clothing 265100 7640325 9891725
## Construction 82225 730000 2655725
## Education 925125 2967025 11616425
## Entertainment 30425 66075 307350
## Food 1544775 28533200 28181500
## Health 62525 1473250 2764825
## Housing 299300 1185175 9972950
## Manufacturing 217375 987525 2015125
## Personal Use 1130575 757100 4566300
## Retail 1559975 24151100 21039750
## Services 1522500 5781500 13531175
## Transportation 117550 1731575 3384825
## Wholesale 57325 153225 336950
plot(xtabs(formula = loan_amount ~ sector + repayment_interval ,data = kiva))heatmap(xtabs(formula = loan_amount ~ sector + repayment_interval ,data = kiva), Rowv = NA, Colv = NA, cexCol = 0.8, cexRow = 0.8)Gunakan fungsi aggregate() untuk aggregasi data lebih fleksibel, dapat menggunakan beragam nilai statistik.
aggreagete(formula=..., data=..., FUN=...)
Ket:
Perbedaan dengan crosstab, pada crosstab hanya menampilkan sum saja.
Tampilkan rata-rata pinjaman berdasarkan sector dan repayment_interval
aggr_sector = aggregate(loan_amount ~ sector + repayment_interval, data = kiva, FUN = mean)
aggr_sector[order(aggr_sector$loan_amount, decreasing = T), ]Dive Deeper
mean_pinjaman = aggregate(loan_amount ~ sector, data = kiva, FUN = mean)
mean_pinjamansort_mean_pinj = mean_pinjaman[order(mean_pinjaman$loan_amount, decreasing = T), ]
sort_mean_pinjtop3 = head(sort_mean_pinj,3)
top3Arts di setiap activity. Kemudian tampilkan 5 activity yang memiliki jumlah pinjaman paling besaronly_arts = kiva[kiva$sector == "Arts", c("activity","loan_amount","sector")]
only_artspinj_arts = aggregate(loan_amount ~ activity , data = only_arts, FUN = sum )
pinj_artssort_pinj_arts = pinj_arts[order(pinj_arts$loan_amount, decreasing = T),]
sort_pinj_artstop5 = head(pinj_arts[order(pinj_arts$loan_amount, decreasing = T),],5)pinj_month = aggregate(loan_amount ~ funded_month, data = kiva, FUN = sum)
order_pinj_month = pinj_month[order(pinj_month$loan_amount, decreasing = T),]
top = head(order_pinj_month,1)
top#durasi = aggregate(range_time ~ sector, data = kiva, FUN = sum)
head(aggregate(range_time ~ sector, data = kiva, FUN = sum)[order(aggregate(range_time ~ sector, data = kiva, FUN = sum)$range_time, decreasing = T),],5)loan = read.csv(file = "data_input/loan.csv")
loanBuat 3 pertanyaan dari data loan, kemudian berikan insight dari output tersebut!
# Aku ingin tau yang credit_historynya poor alias NPL. Tapi sebelum itu, aku mau cek apakah ada missing values?
cek_null = anyNA(is.na(loan))
cek_null## [1] FALSE
# Hasilnya ternyata False. Berarti tidak ada missing values. Sekarang aku ingin tau kebanyakan orang yang credit_historynya poor itu profilenya seperti apa. Dimulai dari dapetin data yang credit_historynya hanya poor.
NPL = loan[loan$credit_history == "poor",]
NPL# Oke, sekarang uda dapet datanya. Aku pengen tau nih, dari yang poor ini, proportion purpose itu berapa aja?
top_purpose = table(NPL$purpose)
top_purpose##
## business car car0
## 23 25 2
## education furniture/appliances renovations
## 5 30 3
# Oke, udah dapet proporsinya. Sekarang mari kita ketahui secara persentase, kontribusinya seberapa?
persentase_purpose = (round(prop.table(top_purpose),2))
persentase_purpose##
## business car car0
## 0.26 0.28 0.02
## education furniture/appliances renovations
## 0.06 0.34 0.03
# Oke uda dapet, sekarang tunjukkan top 3 nya.
sort = head(sort(persentase_purpose, decreasing = T),3)
sort##
## furniture/appliances car business
## 0.34 0.28 0.26
Mengganti Karena Kemungkinan Typo
loan$purpose <- str_replace(string = loan$purpose, pattern = "car0", replacement = "car")
loanfactor_loan_purpose = as.factor(loan$purpose)
levels(factor_loan_purpose)## [1] "business" "car" "education"
## [4] "furniture/appliances" "renovations"
Untuk menjalankan chunk gunakan ctrl + alt + p
Membuat function head and tail.
headtail = function(x) {
dat_head = head(x)
dat_tail = tail(x)
rbind(dat_head, dat_tail)
}headtail(kiva)Kapan harus menggunakan parameter? Penggunaan parameter adalah ketika susunan parameternya tidak beraturan (tidak sesuai aturan). Apabila tidak beraturan namun tidak dimention nama parameternya, R akan membaca sesuai dengan default urutannya.
dailyreport = function(){
kiva = read.csv("data_input/loan_kiva.csv")
kiva$posted_time = as.Date(kiva$posted_time, format = "%Y-%m-%d %H:%M:%S")
kiva$funded_time = as.Date(kiva$funded_time, format = "%Y-%m-%d %H:%M:%S")
kiva$range_time = kiva$funded_time - kiva$posted_time
result = aggregate(range_time ~ sector, data = kiva, FUN = mean)
head(result[order(result$range_time, decreasing = T), ],5)
}
dailyreport()Bagaimana untuk menjalankan perintah yang sudah disimpan itu tadi? Digunakan function source untuk menjalankan function dari Rscript.
source("dailyreport.R")
dailyreport()Parameter pada chunk: - echo = ketika true, maka chunk akan dijalankan namun tidak ditampilkan pada html. - warning = false, tidak akan memunculkan warning message. - include = true, chunk akan menjalankan dan menampilkan output sekaligus pada html. - eval = false, tidak akan menjalankan chunk tersebut.