Introduction

In this paper, I aim to compare different input reduction techniques ( PCA, MDS,t-SNE) on the echonest dataset. The said dataset is huge: with around 13000+ rows and 250 variables. Applying clustering algorithms on this dataset will yield results which are very diicult to present graphically and also to interpret as well. That is why we will use some input reduction techniques on this dataset to reduce it to a lower dimension and make it more comprehendable. Lets start!

Data Preparation

First, lets look prepare the data and look at what columns we have.

echonest_1 <- read.csv("C:/Users/PC-CATHERINE/Desktop/New folder/Unsupervised learning/clustering/fma_metadata/echonest.csv",stringsAsFactors=FALSE)
echonest_1 <- echonest_1[4:13132,]
head(echonest_1)
##   track_id audio_features_acousticness audio_features_danceability
## 4        2                 0.416675233                 0.675893985
## 5        3                 0.374407769                 0.528643062
## 6        5                 0.043566899                  0.74556587
## 7       10                 0.951669965                 0.658178654
## 8      134                 0.452217307                  0.51323805
## 9      139                 0.106549525                 0.260911173
##   audio_features_energy audio_features_instrumentalness audio_features_liveness
## 4           0.634476268                     0.010628068             0.177646571
## 5           0.817461132                     0.001851103             0.105879944
## 6           0.701469992                     0.000696799             0.373143312
## 7           0.924525162                     0.965427015             0.115473884
## 8           0.560409931                     0.019442694             0.096566694
## 9           0.607066864                      0.83508699             0.223676271
##   audio_features_speechiness audio_features_tempo audio_features_valence
## 4                0.159310065              165.922            0.576660988
## 5                0.461818128              126.957            0.269240242
## 6                0.124595342               100.26            0.621661224
## 7                0.032985219              111.562            0.963589892
## 8                0.525519379               114.29            0.894072272
## 9                0.030569276              196.961             0.16026709
##   metadata_album_date metadata_album_name metadata_artist_latitude
## 4                                                          32.6783
## 5                                                          32.6783
## 6                                                          32.6783
## 7           3/11/2008   Constant Hitmaker                  39.9523
## 8                                                          32.6783
## 9                                                          41.8239
##   metadata_artist_location metadata_artist_longitude
## 4              Georgia, US                   -83.223
## 5              Georgia, US                   -83.223
## 6              Georgia, US                   -83.223
## 7     Philadelphia, PA, US                  -75.1624
## 8              Georgia, US                   -83.223
## 9       Providence, RI, US                   -71.412
##                metadata_artist_name      metadata_release
## 4                              AWOL  AWOL - A Way Of Life
## 5                              AWOL  AWOL - A Way Of Life
## 6                              AWOL  AWOL - A Way Of Life
## 7                         Kurt Vile     Constant Hitmaker
## 8                              AWOL  AWOL - A Way Of Life
## 9 Alec K. Redfearn and the Eyesores Every Man For Himself
##   ranks_artist_discovery_rank ranks_artist_familiarity_rank
## 4                                                          
## 5                                                          
## 6                                                          
## 7                        2635                          2544
## 8                                                          
## 9                      149495                        104037
##   ranks_artist_hotttnesss_rank ranks_song_currency_rank
## 4                                                      
## 5                                                      
## 6                                                      
## 7                          397                   115691
## 8                                                      
## 9                       159249                  1871529
##   ranks_song_hotttnesss_rank social_features_artist_discovery
## 4                                                 0.388989865
## 5                                                 0.388989865
## 6                                                 0.388989865
## 7                      67609                      0.557339007
## 8                                                 0.388989865
## 9                    5415434                      0.388922859
##   social_features_artist_familiarity social_features_artist_hotttnesss
## 4                            0.38674                           0.40637
## 5                            0.38674                           0.40637
## 6                            0.38674                           0.40637
## 7                           0.614272                          0.798387
## 8                            0.38674                           0.40637
## 9                           0.330784                            0.4063
##   social_features_song_currency social_features_song_hotttnesss
## 4                             0                               0
## 5                             0                               0
## 6                             0                               0
## 7                   0.005157993                        0.354516
## 8                             0                               0
## 9                       0.00025                         0.03855
##   temporal_features_0 temporal_features_1 temporal_features_2
## 4         0.877233267         0.588911116          0.35424301
## 5         0.534429133         0.537414253         0.443299472
## 6         0.548092544         0.720191777         0.389257073
## 7         0.311404169         0.711402357         0.321913809
## 8         0.610849261         0.569169462         0.428493828
## 9         0.800282419         0.586372316         0.354159534
##   temporal_features_3 temporal_features_4 temporal_features_5
## 4         0.295090139         0.298412502         0.309430391
## 5         0.390878886         0.344572932         0.366447628
## 6         0.344933868         0.361299574         0.402542979
## 7         0.500600755         0.250963062         0.321316451
## 8          0.34579581         0.376920223         0.460590303
## 9          0.26624012          0.25019601         0.211132005
##   temporal_features_6 temporal_features_7 temporal_features_8
## 4         0.304495901         0.334578991         0.249494508
## 5         0.419455349          0.74776578         0.460900873
## 6         0.434043676         0.388137311         0.512486696
## 7         0.734249532          0.32518822         0.373012275
## 8         0.401370943          0.44990024         0.428946465
## 9         0.287834972         0.356035829          0.18532078
##   temporal_features_9 temporal_features_10 temporal_features_11
## 4         0.259655595          0.318376362          0.371973574
## 5         0.392378867          0.474558801          0.406728774
## 6         0.525755167          0.425370872          0.446896374
## 7         0.235840082          0.368755519          0.440774798
## 8         0.446735591          0.479849219          0.378221363
## 9         0.187472969          0.278765291          0.245532438
##   temporal_features_12 temporal_features_13 temporal_features_14
## 4                    1           0.57099998          0.277999997
## 5          0.505999982          0.514500022          0.386999995
## 6          0.510999978          0.772000015          0.361000001
## 7          0.263000011          0.736000001          0.273000002
## 8          0.614000022          0.545000017          0.363000006
## 9                    1          0.566999972          0.284999996
##   temporal_features_15 temporal_features_16 temporal_features_17
## 4          0.209999993          0.215000004          0.228500009
## 5          0.323500007          0.280499995          0.313499987
## 6          0.287999988                0.331          0.372000009
## 7          0.425999999          0.214000002          0.287999988
## 8          0.280000001           0.31099999          0.397000015
## 9                0.184          0.180000007          0.153999999
##   temporal_features_18 temporal_features_19 temporal_features_20
## 4          0.237500012          0.279000014          0.168500006
## 5          0.345499992          0.898000002          0.436500013
## 6          0.358999997          0.279000014          0.442999989
## 7          0.810000002          0.246000007          0.294999987
## 8          0.317000002          0.404000014          0.356000006
## 9          0.224000007          0.273000002          0.126000002
##   temporal_features_21 temporal_features_22 temporal_features_23
## 4          0.168500006          0.279000014          0.332499981
## 5          0.338499993          0.398000002           0.34799999
## 6          0.483999997          0.368000001          0.397000015
## 7          0.164000005           0.31099999          0.386000007
## 8          0.379999995          0.419999987          0.291999996
## 9          0.120999999          0.194000006          0.197999999
##   temporal_features_24 temporal_features_25 temporal_features_26
## 4          0.049847808          0.104211681          0.060229637
## 5          0.079207376          0.083318971          0.073595144
## 6          0.081051275          0.078300044          0.048696768
## 7          0.033968538          0.070691802            0.0391615
## 8          0.085176423          0.092242472          0.073182762
## 9          0.088247903          0.081918128          0.076484337
##   temporal_features_27 temporal_features_28 temporal_features_29
## 4          0.052289635          0.047402892          0.052814532
## 5          0.071024314          0.056678556          0.066113152
## 6          0.056921616          0.045264285          0.066819489
## 7          0.095780514          0.024102403          0.028496824
## 8          0.056353632          0.062012442          0.088343367
## 9          0.060063873          0.052019566          0.034803737
##   temporal_features_30 temporal_features_31 temporal_features_32
## 4          0.052732728          0.062216219          0.051613092
## 5          0.073888682          0.088100173          0.071305215
## 6          0.094489083          0.089250185          0.098089173
## 7          0.073847033          0.045102958          0.065468304
## 8          0.077083767          0.097941823          0.101789653
## 9          0.058554225          0.070241667          0.030110853
##   temporal_features_33 temporal_features_34 temporal_features_35
## 4          0.057399247          0.053198915          0.062582977
## 5          0.059274983          0.088221595          0.067297839
## 6          0.084133461          0.068866462          0.086223744
## 7          0.041634198          0.041618872          0.084442049
## 8          0.094533332           0.08936704          0.088544183
## 9          0.041446012          0.071225368          0.035375651
##   temporal_features_36 temporal_features_37 temporal_features_38
## 4          0.035999999          0.017999999          0.017000001
## 5          0.039999999          0.039999999          0.028999999
## 6                0.023                0.023                0.024
## 7          0.027000001                0.081                0.035
## 8                0.003                0.012                0.003
## 9          0.018999999                0.015                0.009
##   temporal_features_39 temporal_features_40 temporal_features_41
## 4                0.021                0.021                 0.01
## 5                0.021                0.009                 0.02
## 6                0.021                0.023                 0.02
## 7                0.025                0.033                0.008
## 8                0.004                 0.01                0.015
## 9                0.005                0.007                0.006
##   temporal_features_42 temporal_features_43 temporal_features_44
## 4                0.015          0.041000001                 0.01
## 5                 0.02          0.052999999                0.022
## 6          0.028999999                0.022          0.039999999
## 7                0.099          0.037999999                0.022
## 8                0.005                0.006          0.016000001
## 9          0.016000001                0.014                0.012
##   temporal_features_45 temporal_features_46 temporal_features_47
## 4                0.009                0.021                0.013
## 5          0.032000002          0.034000002          0.028000001
## 6          0.026000001          0.032000002          0.016000001
## 7                0.009          0.039999999          0.018999999
## 8                0.014                0.013                0.007
## 9                0.005                 0.01                0.008
##   temporal_features_48 temporal_features_49 temporal_features_50
## 4                    1                    1                    1
## 5                    1                    1                    1
## 6                    1                    1                    1
## 7                    1                    1                    1
## 8                    1                    1                    1
## 9                    1                    1                    1
##   temporal_features_51 temporal_features_52 temporal_features_53
## 4                    1                    1                    1
## 5                    1                    1                    1
## 6                    1                    1                    1
## 7                    1                    1                    1
## 8                    1                    1                    1
## 9                    1                    1                    1
##   temporal_features_54 temporal_features_55 temporal_features_56
## 4                    1                    1                    1
## 5                    1                    1                    1
## 6                    1                    1                    1
## 7                    1                    1                    1
## 8                    1                    1                    1
## 9                    1                    1                    1
##   temporal_features_57 temporal_features_58 temporal_features_59
## 4                    1                    1                    1
## 5                    1                    1                    1
## 6                    1                    1                    1
## 7                    1                    1                    1
## 8                    1                    1                    1
## 9                    1                    1                    1
##   temporal_features_60 temporal_features_61 temporal_features_62
## 4          0.963999987          0.981999993           0.98299998
## 5          0.959999979          0.959999979          0.971000016
## 6          0.976999998          0.976999998          0.976000011
## 7           0.97299999           0.91900003          0.964999974
## 8          0.996999979          0.987999976          0.996999979
## 9          0.981000006          0.985000014          0.990999997
##   temporal_features_63 temporal_features_64 temporal_features_65
## 4          0.978999972          0.978999972           0.99000001
## 5          0.978999972          0.990999997          0.980000019
## 6          0.978999972          0.976999998          0.980000019
## 7          0.975000024          0.967000008          0.991999984
## 8          0.995999992           0.99000001          0.985000014
## 9          0.995000005          0.992999971          0.994000018
##   temporal_features_66 temporal_features_67 temporal_features_68
## 4          0.985000014          0.958999991           0.99000001
## 5          0.980000019          0.947000027          0.977999985
## 6          0.971000016          0.977999985          0.959999979
## 7          0.901000023          0.962000012          0.977999985
## 8          0.995000005          0.994000018          0.984000027
## 9          0.984000027          0.986000001          0.987999976
##   temporal_features_69 temporal_features_70 temporal_features_71
## 4          0.990999997          0.978999972          0.986999989
## 5          0.967999995          0.966000021          0.972000003
## 6          0.973999977          0.967999995          0.984000027
## 7          0.990999997          0.959999979          0.981000006
## 8          0.986000001          0.986999989          0.992999971
## 9          0.995000005           0.99000001          0.991999984
##   temporal_features_72 temporal_features_73 temporal_features_74
## 4         -1.899341822         -0.032654114           0.87846911
## 5          0.197377607          0.182771787          0.608393788
## 6          0.192822129         -0.671700835          0.716430783
## 7          1.373788953         -0.422791123          1.210828781
## 8         -0.099188171          0.033726491          0.699475884
## 9         -1.316763163         -0.044169307          0.784182429
##   temporal_features_75 temporal_features_76 temporal_features_77
## 4          1.147537947          0.950855732          0.948257029
## 5          0.785822094          0.773478866          0.650546253
## 6          1.177679062          0.629193127          0.478121221
## 7          0.401990235           1.83861196          1.161653876
## 8          1.039602399          0.898852348          0.505001247
## 9          1.179121137          1.514389396          1.552488208
##   temporal_features_78 temporal_features_79 temporal_features_80
## 4          1.157886982          1.147910953          1.646318436
## 5          0.574604988         -0.767803609           0.32626611
## 6          0.633280337          0.862866283          0.344353527
## 7         -0.547190547          1.386646748          1.216523647
## 8          0.625378251          0.394605964          0.554671347
## 9          1.392562747          1.159600854          2.182097912
##   temporal_features_81 temporal_features_82 temporal_features_83
## 4          1.530193329           1.19756794          0.745672822
## 5          0.808435142          0.506893337          0.682139456
## 6          0.264090031          0.673425674          0.461553812
## 7           2.32090044          1.221092463          0.474826604
## 8          0.524493814          0.358941972          0.864620507
## 9          2.424869537          1.430303574          1.744238973
##   temporal_features_84 temporal_features_85 temporal_features_86
## 4          2.510037899         -1.500183225           0.03053999
## 5         -1.157547832         -1.170147061         -0.683187723
## 6          -1.07932806         -0.744193077           0.10199213
## 7            2.1177001         -1.080738664          1.304154396
## 8         -1.255710125         -1.326044679          -0.51587224
## 9           0.33348608         -1.060922384         -0.441638708
##   temporal_features_87 temporal_features_88 temporal_features_89
## 4          0.694242001          0.170431614          0.064694881
## 5         -0.366573572          -0.24535656         -0.547616005
## 6          0.862340212          -0.29469347         -0.819227934
## 7          -1.20128572          4.986208916          1.730811596
## 8          0.517893076         -0.001662016         -0.967699766
## 9          0.646966934          1.989299297          2.555457115
##   temporal_features_90 temporal_features_91 temporal_features_92
## 4          0.874726534          0.722576141          2.251319885
## 5         -0.809711218         -0.894494772         -0.808738232
## 6          -0.85995698         -0.540470123         -1.287919641
## 7         -1.124397993          1.428501129          0.490016699
## 8         -0.747462511         -1.202027679         -1.038380623
## 9           1.49840498          0.470611811          5.622509956
##   temporal_features_93 temporal_features_94 temporal_features_95
## 4          1.708159447          1.054857254          0.020674944
## 5          -0.13031745         -1.056485295         -0.510763168
## 6         -1.182707906         -0.566510439         -0.931231976
## 7          5.137411118          1.125351429         -0.976437807
## 8         -1.039334655          -1.07629323         -0.390393019
## 9           6.15321064          1.250901699          3.696545124
##   temporal_features_96 temporal_features_97 temporal_features_98
## 4          42.94913101          44.38743591           32.4093895
## 5          44.09728241          48.79024124          10.58431721
## 6          40.27466202           6.50887394         -7.265672684
## 7          46.43989944          6.738813877          72.58660126
## 8          40.35828018          24.11554718          20.22726059
## 9          46.06570816          43.61607742          37.65499496
##   temporal_features_99 temporal_features_100 temporal_features_101
## 4          15.66866684           10.11402798          -4.069252491
## 5         -2.565454006          -1.292830706          -4.490148544
## 6         -4.340634823           10.40727139          -7.618135452
## 7          20.43871689          -32.37782669          -3.392143488
## 8          6.252143383          -21.95030594           5.266994476
## 9         -1.757543922          -20.96863747          -18.83882141
##   temporal_features_102 temporal_features_103 temporal_features_104
## 4           2.042353153           2.188321114          -3.805923462
## 5          -0.633740664           2.112556458           -7.28805542
## 6           5.729183197           0.286108196           10.88886547
## 7          -1.747229695          -9.380472183           1.754842758
## 8          -5.009126186           0.108463913           12.66572094
## 9          -4.884634018          -3.038664818           7.537405491
##   temporal_features_105 temporal_features_106 temporal_features_107
## 4          -0.494698674           6.024669647            10.6925993
## 5          -5.132599354          -2.390408516           11.44797802
## 6            0.24168165           -3.91210866           1.756582856
## 7          -11.14752197           5.879512787           3.324857235
## 8           11.32713985          -4.692913055          -0.311117172
## 9           3.371185303           0.908670306          -0.195674002
##   temporal_features_108 temporal_features_109 temporal_features_110
## 4           44.44250107           42.38850021           31.68499947
## 5           45.41450119           51.97900009           6.597999573
## 6           41.42699814           7.835999966          -10.47999954
## 7           47.18700027           3.536000013           74.30599976
## 8           41.78499985           19.59199905           7.034999847
## 9           46.70500183           41.91199875           38.60599899
##   temporal_features_111 temporal_features_112 temporal_features_113
## 4           9.987500191           9.568500519          -7.148499966
## 5           0.280000001                -0.012          -8.049499512
## 6          -5.742000103           10.46800041          -10.38000011
## 7            19.5890007           -36.0530014          -3.496999979
## 8           1.393000007          -23.07999992          -2.693000078
## 9                -2.375          -19.80999947          -20.77599907
##   temporal_features_114 temporal_features_115 temporal_features_116
## 4           3.831500053           1.850500107               -2.6875
## 5          -0.682999969           1.031000018          -7.077500343
## 6           5.907999992           0.906000018           12.02900028
## 7          -0.418000013          -9.842000008           0.898000002
## 8           -3.40899992          -1.279999971            13.7489996
## 9          -3.755000114          -1.960999966           6.427999973
##   temporal_features_117 temporal_features_118 temporal_features_119
## 4          -0.799999952           5.461500168           10.25650024
## 5          -4.321000099           -0.92750001           9.089500427
## 6          -1.319000006          -3.049000025           0.986999989
## 7          -9.960000038           6.119999886           3.911000013
## 8            11.0340004          -3.838999987          -1.822000027
## 9           3.122999907            1.70299995          -0.824000001
##   temporal_features_120 temporal_features_121 temporal_features_122
## 4           39.49481964           1966.979126           1825.123047
## 5           22.51940727           1694.821167           1256.443848
## 6           27.55527115           1956.254395           1382.757202
## 7           22.19372749           1392.732788           572.2828369
## 8           26.85305023           4123.289551           4842.126953
## 9           20.70482063           1268.838623           927.0623779
##   temporal_features_123 temporal_features_124 temporal_features_125
## 4           1903.756714           828.8100586           911.1558228
## 5           1251.588257            907.545166           588.6020508
## 6           1596.684204           983.1115112           945.4044189
## 7            694.788147           880.8521118           344.1044617
## 8           2033.496216           1603.765381           1318.972656
## 9           624.9285889           586.0334473           432.5063171
##   temporal_features_126 temporal_features_127 temporal_features_128
## 4           581.0153198           722.0014038           404.6825562
## 5           619.9716797           679.5880127           301.7233582
## 6           659.3389282           835.0131226           399.1546936
## 7           395.0022583           306.6034546           162.2848206
## 8           709.5377197           1050.203857           758.4732056
## 9           428.2659302           282.7200623           205.2754974
##   temporal_features_129 temporal_features_130 temporal_features_131
## 4           315.5284729           376.6324158            229.282547
## 5           401.6705322           294.2216187           411.2994995
## 6            483.607666           378.4648743           244.3444672
## 7           283.1201172           125.4874268           139.4597778
## 8           563.1395874            366.803772           409.6324768
## 9           160.5900116           117.3566208           171.0218506
##   temporal_features_132 temporal_features_133 temporal_features_134
## 4                     0          -110.3679962          -100.6050034
## 5                     0          -82.77400208          -137.5910034
## 6                     0          -138.4380035          -137.2039948
## 7                     0          -174.0859985          -61.27899933
## 8           10.06499958          -162.1009979          -137.9539948
## 9           5.455999851          -70.10800171          -163.3690033
##   temporal_features_135 temporal_features_136 temporal_features_137
## 4          -112.5810013          -75.88200378          -89.16000366
## 5          -131.7290039          -106.2429962          -73.44499969
## 6          -126.4509964          -89.24700165          -198.0559998
## 7          -95.27200317          -91.91000366          -56.06499863
## 8          -137.9830017           -146.548996          -105.6989975
## 9           -210.951004          -108.5390015          -72.88600159
##   temporal_features_138 temporal_features_139 temporal_features_140
## 4          -80.73799896           -91.4980011          -66.64900208
## 5          -83.46800232          -81.32299805           -71.0739975
## 6          -78.34200287          -89.74500275          -50.59600067
## 7           -101.487999          -70.79599762          -40.38999939
## 8          -84.07700348           -99.0510025          -71.30200195
## 9          -84.99500275           -92.5739975          -45.71099854
##   temporal_features_141 temporal_features_142 temporal_features_143
## 4          -61.84500122          -66.08100128          -58.04399872
## 5          -108.5650024           -71.4980011          -51.35100174
## 6          -81.18900299          -57.69400024          -57.31200027
## 7          -58.23400116          -95.46399689          -43.45800018
## 8          -76.05400085          -78.45800018          -64.71399689
## 9          -63.77600098          -71.32499695          -38.44900131
##   temporal_features_144 temporal_features_145 temporal_features_146
## 4           52.00600052           216.2369995           208.4230042
## 5           51.36600113           190.3339996           114.8440018
## 6           48.24000168           211.4900055            98.5039978
## 7           52.19300079           171.1300049           131.0859985
## 8           47.80400085           243.9210052           251.8540039
## 9           52.64899826           178.2590027           152.9559937
##   temporal_features_147 temporal_features_148 temporal_features_149
## 4           145.1940002           97.48200226           98.72299957
## 5           359.9419861           101.8619995           111.0820007
## 6           316.5509949           92.76300049           212.5590057
## 7           298.5969849           159.0930023           105.1169968
## 8           212.2160034           107.8359985           192.6790009
## 9           225.2250061           57.48600006            143.628006
##   temporal_features_150 temporal_features_151 temporal_features_152
## 4           68.09100342           101.5889969            69.5059967
## 5           78.64800262           103.0009995           46.22299957
## 6           69.36699677            126.810997           63.86800003
## 7           73.43399811           79.76000214           49.59899902
## 8           82.65399933           107.7369995           107.2570038
## 9           71.72699738           70.36100006           55.24100113
##   temporal_features_153 temporal_features_154 temporal_features_155
## 4           58.22700119           69.26200104           58.17599869
## 5           53.99399948           61.18099976           90.42900085
## 6           73.84200287           60.08800125           70.40200043
## 7           63.23099899            69.7539978           35.38800049
## 8           89.80400085           75.47599792           71.63800049
## 9           57.18600082           45.38999939           55.45199966
##   temporal_features_156 temporal_features_157 temporal_features_158
## 4           52.00600052           326.6049805           309.0280151
## 5           51.36600113           273.1080017           252.4349976
## 6           48.24000168            349.928009           235.7079926
## 7           52.19300079           345.2160034           192.3649902
## 8           37.73900223           406.0220032           389.8079834
## 9           47.19299698           248.3670044           316.3250122
##   temporal_features_159 temporal_features_160 temporal_features_161
## 4           257.7749939           173.3640137           187.8829956
## 5             491.67099           208.1049957           184.5270081
## 6           443.0019836           182.0100098           410.6149902
## 7            393.868988            251.003006           161.1819916
## 8           350.1990051           254.3849945           298.3779907
## 9           436.1760254           166.0249939           216.5140076
##   temporal_features_162 temporal_features_163 temporal_features_164
## 4             148.82901           193.0870056           136.1549988
## 5           162.1159973           184.3240051           117.2969971
## 6           147.7089996           216.5559998           114.4640045
## 7           174.9219971           150.5559998           89.98899841
## 8           166.7310028           206.7879944           178.5590057
## 9           156.7220001           162.9349976           100.9519958
##   temporal_features_165 temporal_features_166 temporal_features_167
## 4           120.0720062           135.3430023           116.2200012
## 5           162.5590057           132.6790009           141.7799988
## 6           155.0310059           117.7819977           127.7140045
## 7           121.4649963           165.2179871           78.84600067
## 8           165.8580017           153.9339905           136.3519897
## 9           120.9620056           116.7149963           93.90100098
##   temporal_features_168 temporal_features_169 temporal_features_170
## 4          -2.952152491           0.060378753           0.525976002
## 5          -1.827564001          -0.083561122           0.162381768
## 6          -2.893348694           0.052128505             0.1697772
## 7          -4.515986443            0.08299911           -0.47142157
## 8          -1.652578592           0.301870048             0.6659832
## 9          -2.668028832           0.368284553          -0.717473745
##   temporal_features_171 temporal_features_172 temporal_features_173
## 4           0.365914643           0.018182358           0.454430938
## 5           0.829534471          -0.164874077           0.897740006
## 6           0.796857715          -0.164510101           0.464760065
## 7           2.171539068           1.747734904           0.435429275
## 8           0.784959793            0.10766203           1.039749503
## 9           0.556752384          -0.388757259           2.609678268
##   temporal_features_174 temporal_features_175 temporal_features_176
## 4          -0.330007434           0.149395019          -0.214858666
## 5          -0.058807492           0.365381032           -0.13138853
## 6          -0.211986959           0.027119339           -0.21523957
## 7          -0.603002369           0.200987026           0.127109975
## 8           -0.13751407           0.217577919          -0.044490114
## 9          -0.219993308          -0.936712086           0.461267293
##   temporal_features_177 temporal_features_178 temporal_features_179
## 4           0.030427268          -0.153877094          -0.150131583
## 5           -0.24557887           -0.33528015           0.613119781
## 6            0.08305224          -0.004778119           0.114814624
## 7          -0.005297164          -0.956349313          -0.287195444
## 8           0.011159069          -0.265694797           0.331218362
## 9           -0.25238502          -1.753690362           0.325034857
##   temporal_features_180 temporal_features_181 temporal_features_182
## 4             13.206213           1.009933949           1.577194214
## 5           8.424042702            0.23083353           0.614211559
## 6           12.99816608           1.258411408          -0.105143309
## 7           30.33190537           2.051291943           1.123435974
## 8            3.16800642            0.14156127          -0.047710419
## 9           11.16335583           0.683052778           3.298259735
##   temporal_features_183 temporal_features_184 temporal_features_185
## 4           0.337023497           0.097149372           0.401259661
## 5           11.62734795           1.015812874           1.627731323
## 6           5.284808159          -0.250733852           4.719754696
## 7           22.17761612           7.889377594           1.809147358
## 8           1.916983604          -0.139364481           2.251030445
## 9           17.83130455           0.366277695           13.12767601
##   temporal_features_186 temporal_features_187 temporal_features_188
## 4           0.006324291           0.643485785           0.012058735
## 5           0.032317877           0.819125652           -0.03099823
## 6           -0.18334198           0.340812445           -0.29597044
## 7           2.219094753           1.518430233           0.654815435
## 8          -0.224826098            0.05070281           0.188019276
## 9           0.144084454           4.395817757             0.5084548
##   temporal_features_189 temporal_features_190 temporal_features_191
## 4           0.237947464           0.655938387           1.213864327
## 5           0.734610081            0.45888257           0.999964476
## 6           0.099103212           0.098722696           1.389371872
## 7           0.650727272           12.65647316           0.406731367
## 8           0.249749661           0.931698084           0.766068697
## 9           3.026659966           9.700685501           0.401282549
##   temporal_features_192 temporal_features_193 temporal_features_194
## 4          -12.48614597          -11.26949978           46.03126144
## 5          -12.50204372           -11.4204998           26.46855164
## 6           -15.4580946          -14.10499954           35.95522308
## 7          -10.24489021          -9.463999748           20.30430794
## 8          -15.14547157          -14.15100002           19.98814583
## 9          -11.21361256           -10.5539999           12.38000679
##   temporal_features_195 temporal_features_196 temporal_features_197
## 4                   -60          -3.933000088           56.06700134
## 5                   -60          -5.789000034           54.21099854
## 6                   -60          -7.248000145            52.7519989
## 7                   -60           -5.02699995           54.97299957
## 8          -40.20999908          -7.350999832           32.85900116
## 9          -52.50999832          -3.947999954           48.56199646
##   temporal_features_198 temporal_features_199 temporal_features_200
## 4          -2.587475061           11.80258465           0.047970295
## 5          -1.755855203            7.89535141           0.057707384
## 6          -2.505532742           9.716597557           0.058607817
## 7          -5.365218639           41.20127869           0.048938308
## 8           -1.63250792            3.34098196           0.059469711
## 9          -2.533699989           18.93443108           0.051385369
##   temporal_features_201 temporal_features_202 temporal_features_203
## 4              0.038275           0.000988261                     0
## 5           0.045359999           0.001397325                     0
## 6           0.045699999           0.001776559                     0
## 7           0.040800002           0.002591431                     0
## 8           0.048560001           0.001586408               0.01079
## 9           0.041859999           0.002096751               0.00532
##   temporal_features_204 temporal_features_205 temporal_features_206
## 4           0.207300007           0.207300007           1.603658557
## 5            0.33950001            0.33950001           2.271020651
## 6           0.294970006           0.294970006           1.827837348
## 7           0.895739973           0.895739973           10.53970909
## 8           0.420060009           0.409270018           2.763947725
## 9           0.567369998           0.562049985           4.573484898
##   temporal_features_207 temporal_features_208 temporal_features_209
## 4           2.984275818          -21.81207657          -20.31200027
## 5           9.186051369          -20.18503189          -19.86800003
## 6           5.253726959          -24.52311897          -24.36700058
## 7           150.3599854           -16.4727726          -15.90299988
## 8           13.71832371          -24.33657455           -22.4489994
## 9           33.38273621          -16.18879509          -15.30300045
##   temporal_features_210 temporal_features_211 temporal_features_212
## 4           49.15748215                   -60          -9.690999985
## 5           24.00232697                   -60          -9.678999901
## 6           31.80454636                   -60          -12.58199978
## 7           27.53944016                   -60          -9.024999619
## 8           52.78390503                   -60          -13.12800026
## 9             34.669384                   -60          -8.598999977
##   temporal_features_213 temporal_features_214 temporal_features_215
## 4           50.30899811          -1.992302537           6.805693626
## 5           50.32099915          -1.582331181           8.889307976
## 6           47.41799927          -2.288357973           11.52710915
## 7           50.97499847          -3.662987709            21.5082283
## 8           46.87200165          -1.452696323           2.356398106
## 9           51.40100098          -3.078667164           12.41156673
##   temporal_features_216 temporal_features_217 temporal_features_218
## 4           0.233069763           0.192880005           0.027454989
## 5            0.25846377           0.220905006           0.081368424
## 6           0.256821364               0.23782           0.060122397
## 7           0.283351898           0.267069995           0.125704497
## 8            0.23468639           0.199550003           0.149331778
## 9           0.270801574           0.272700012           0.025242079
##   temporal_features_219 temporal_features_220 temporal_features_221
## 4               0.06408           3.676959992           3.612879992
## 5           0.064130001           6.082769871           6.018640041
## 6           0.060139999            5.92648983           5.866349697
## 7           0.080820002           8.414010048           8.333189964
## 8           0.064400002           11.26706982            11.2026701
## 9           0.064039998           2.436690092           2.372650147
##   temporal_features_222 temporal_features_223
## 4           13.31669044           262.9297485
## 5           16.67354774           325.5810852
## 6           16.01384926           356.7557373
## 7           21.31706429           483.4038086
## 8           26.45417976           751.1477051
## 9           3.897095442           37.86604309

Now, we need to remove the text based columns and convert the rest of the columns to numeric type. Furthermore, we will also scale the data as the columns differ in the measures and hence their metrics and scales. For now, we are only taking the sample of the data as the entire data takes a longer time to run.

echonest<-echonest_1[1:2000,c(-10,-11,-13,-15,-16)]
echonest<-echonest[,c(-10,-11)]
names<-colnames(echonest)
echonest[names] <- sapply(echonest[names],as.numeric)
echonest[,-1]<-scale(echonest[,-1])
head(echonest)
##   track_id audio_features_acousticness audio_features_danceability
## 4        2                  -0.7579922                   1.6349737
## 5        3                  -0.8831350                   0.7354699
## 6        5                  -1.8626679                   2.0605746
## 7       10                   0.8259867                   1.5267570
## 8      134                  -0.6527614                   0.6413661
## 9      139                  -1.6761929                  -0.9000095
##   audio_features_energy audio_features_instrumentalness audio_features_liveness
## 4             0.4012889                      -2.1123487             -0.09593665
## 5             1.0306976                      -2.1392744             -0.51815593
## 6             0.6317257                      -2.1428156              1.05421484
## 7             1.3989632                       0.8167603             -0.46171261
## 8             0.1465247                      -2.0853074             -0.57294788
## 9             0.3070094                       0.4169063              0.17486647
##   audio_features_speechiness audio_features_tempo audio_features_valence
## 4                  0.3752442           1.14061665              0.6356884
## 5                  2.3704497           0.05016077             -0.4698175
## 6                  0.1462817          -0.69696872              0.7975123
## 7                 -0.4579370          -0.38067634              2.0271111
## 8                  2.7905942          -0.30433184              1.7771210
## 9                 -0.4738714           2.00925928             -0.8616923
##   ranks_artist_discovery_rank ranks_artist_familiarity_rank
## 4                          NA                            NA
## 5                          NA                            NA
## 6                          NA                            NA
## 7                 -0.69589482                   -0.52922575
## 8                          NA                            NA
## 9                 -0.06980413                    0.08100297
##   ranks_artist_hotttnesss_rank ranks_song_currency_rank
## 4                           NA                       NA
## 5                           NA                       NA
## 6                           NA                       NA
## 7                 -0.538130034               -1.5424660
## 8                           NA                       NA
## 9                 -0.009019591               -0.6646663
##   ranks_song_hotttnesss_rank social_features_artist_discovery
## 4                         NA                        0.6392530
## 5                         NA                        0.6392530
## 6                         NA                        0.6392530
## 7                  -1.247402                        2.0977606
## 8                         NA                        0.6392530
## 9                   1.752815                        0.6386725
##   social_features_artist_familiarity social_features_artist_hotttnesss
## 4                          0.5639636                         0.4264003
## 5                          0.5639636                         0.4264003
## 6                          0.5639636                         0.4264003
## 7                          2.2050837                         3.1913666
## 8                          0.5639636                         0.4264003
## 9                          0.1603697                         0.4259065
##   social_features_song_currency social_features_song_hotttnesss
## 4                    -0.2278766                      -0.4837453
## 5                    -0.2278766                      -0.4837453
## 6                    -0.2278766                      -0.4837453
## 7                    10.6144361                       5.8609075
## 8                    -0.2278766                      -0.4837453
## 9                     0.2976337                       0.2061710
##   temporal_features_0 temporal_features_1 temporal_features_2
## 4           2.6691868           1.0780202         -0.16983137
## 5           0.5791185           0.7519850          0.48072410
## 6           0.6624240           1.9091797          0.08594558
## 7          -0.7806591           1.8535325         -0.40599546
## 8           1.0450501           0.9530325          0.37256920
## 9           2.2000194           1.0619466         -0.17044116
##   temporal_features_3 temporal_features_4 temporal_features_5
## 4          -0.1639694         -0.61025010          -0.2116087
## 5           0.6155101         -0.30673522           0.2240596
## 6           0.2416332         -0.19675391           0.4998640
## 7           1.5083701         -0.92224050          -0.1207874
## 8           0.2486472         -0.09404474           0.9434033
## 9          -0.3987360         -0.92728403          -0.9627062
##   temporal_features_6 temporal_features_7 temporal_features_8
## 4          -0.3056261         -0.24104072          -0.6052928
## 5           0.6065090          2.94463037           1.0576909
## 6           0.7222587          0.17189405           1.4634799
## 7           3.1042144         -0.31344359           0.3663338
## 8           0.4630199          0.64808637           0.8063283
## 9          -0.4378208         -0.07560845          -1.1101019
##   temporal_features_9 temporal_features_10 temporal_features_11
## 4          -0.7755455           0.09014109           0.04987199
## 5           0.1673718           1.40693733           0.30688954
## 6           1.1149285           0.99222694           0.60393222
## 7          -0.9447401           0.51489489           0.55866267
## 8           0.5535430           1.45154159           0.09607490
## 9          -1.2883588          -0.24382545          -0.88517055
##   temporal_features_12 temporal_features_13 temporal_features_14
## 4            2.7750983            1.0350260           -0.1823276
## 5            0.5293443            0.7527431            0.4466169
## 6            0.5520746            2.0392547            0.2965935
## 7           -0.5753482            1.8593928           -0.2111782
## 8            1.0203191            0.9051260            0.3081338
## 9            2.7750983            1.0150413           -0.1419366
##   temporal_features_15 temporal_features_16 temporal_features_17
## 4           -0.3295934          -0.57531906           -0.2787673
## 5            0.4990076          -0.24027142            0.2823319
## 6            0.2398416           0.01804782            0.6685004
## 7            1.2473035          -0.58043430            0.1140021
## 8            0.1814381          -0.08425687            0.8335297
## 9           -0.5194050          -0.75435216           -0.7705545
##   temporal_features_18 temporal_features_19 temporal_features_20
## 4           -0.2806696          -0.08983402           -0.6489593
## 5            0.4599513           3.77829878            1.1971361
## 6            0.5525290          -0.08983402            1.2419106
## 7            3.6453075          -0.29605116            0.2224251
## 8            0.2645097           0.69129136            0.6426186
## 9           -0.3732472          -0.12732811           -0.9417170
##   temporal_features_21 temporal_features_22 temporal_features_23
## 4           -0.7302833            0.2879853           0.20368864
## 5            0.2371546            1.1694669           0.29660625
## 6            1.0651677            0.9472446           0.59034575
## 7           -0.7558920            0.5250222           0.52440421
## 8            0.4733233            1.3324298          -0.03909583
## 9           -1.0005969           -0.3416445          -0.60259580
##   temporal_features_24 temporal_features_25 temporal_features_26
## 4          -1.02257052           1.02400973          -0.49898446
## 5          -0.04928989           0.26444066          -0.06004333
## 6           0.01183605           0.08197407          -0.87773931
## 7          -1.54897425          -0.19462889          -1.19089027
## 8           0.14858625           0.58886078          -0.07358650
## 9           0.25040696           0.21351204           0.03484164
##   temporal_features_27 temporal_features_28 temporal_features_29
## 4          -0.11998444           -0.9579198          -0.39501054
## 5           0.56164735           -0.6575957           0.05471763
## 6           0.04854290           -1.0271628           0.07860429
## 7           1.46236269           -1.7123346          -1.21737845
## 8           0.02787769           -0.4848971           0.80649141
## 9           0.16286897           -0.8084428          -1.00409343
##   temporal_features_30 temporal_features_31 temporal_features_32
## 4           -0.4141219           -0.4439464           -0.3189987
## 5            0.3435524            0.3996681            0.3904499
## 6            1.0813302            0.4371495            1.3553962
## 7            0.3420608           -1.0017050            0.1801634
## 8            0.4579804            0.7204290            1.4887135
## 9           -0.2056322           -0.1823796           -1.0936604
##   temporal_features_33 temporal_features_34 temporal_features_35
## 4           -0.6141902           -0.2232667           -0.3416775
## 5           -0.5552448            1.0214167           -0.1869165
## 6            0.2259389            0.3335478            0.4343091
## 7           -1.1096107           -0.6348139            0.3758266
## 8            0.5527574            1.0621251            0.5104754
## 9           -1.1155245            0.4173818           -1.2347332
##   temporal_features_36 temporal_features_37 temporal_features_38
## 4           0.42458091           -0.1289294            0.0019827
## 5           0.55046659            0.6689458            0.6280831
## 6           0.01545247            0.0524059            0.3672079
## 7           0.14133818            2.1558953            0.9411334
## 8          -0.61397595           -0.3465317           -0.7284679
## 9          -0.11043325           -0.2377306           -0.4154177
##   temporal_features_39 temporal_features_40 temporal_features_41
## 4            0.2781594            0.1207125          -0.30287448
## 5            0.2781594           -0.4139065           0.23571266
## 6            0.2781594            0.2098157           0.23571266
## 7            0.4865965            0.6553315          -0.41059191
## 8           -0.6076985           -0.3693549          -0.03358091
## 9           -0.5555892           -0.5030097          -0.51830933
##   temporal_features_42 temporal_features_43 temporal_features_44
## 4          -0.08516872           1.41356465         -0.329784407
## 5           0.18090037           2.08149552          0.326502961
## 6           0.65982466           0.35600721          1.310933959
## 7           4.38479188           1.24658180          0.326502961
## 8          -0.61730688          -0.53456743         -0.001640668
## 9          -0.03195485          -0.08928011         -0.220403179
##   temporal_features_45 temporal_features_46 temporal_features_47
## 4           -0.3738172            0.3430937         -0.164439280
## 5            0.8000234            1.0686866          0.641240712
## 6            0.4938041            0.9570570         -0.003303238
## 7           -0.3738172            1.4035754          0.157832642
## 8           -0.1186344           -0.1034249         -0.486711255
## 9           -0.5779633           -0.2708694         -0.432999259
##   temporal_features_48 temporal_features_49 temporal_features_50
## 4           0.06799924           0.07992043            0.1140083
## 5           0.06799924           0.07992043            0.1140083
## 6           0.06799924           0.07992043            0.1140083
## 7           0.06799924           0.07992043            0.1140083
## 8           0.06799924           0.07992043            0.1140083
## 9           0.06799924           0.07992043            0.1140083
##   temporal_features_51 temporal_features_52 temporal_features_53
## 4            0.1947765            0.1237257             0.144763
## 5            0.1947765            0.1237257             0.144763
## 6            0.1947765            0.1237257             0.144763
## 7            0.1947765            0.1237257             0.144763
## 8            0.1947765            0.1237257             0.144763
## 9            0.1947765            0.1237257             0.144763
##   temporal_features_54 temporal_features_55 temporal_features_56
## 4              0.13609            0.1219353            0.1448442
## 5              0.13609            0.1219353            0.1448442
## 6              0.13609            0.1219353            0.1448442
## 7              0.13609            0.1219353            0.1448442
## 8              0.13609            0.1219353            0.1448442
## 9              0.13609            0.1219353            0.1448442
##   temporal_features_57 temporal_features_58 temporal_features_59
## 4            0.1142661            0.1467471            0.1161975
## 5            0.1142661            0.1467471            0.1161975
## 6            0.1142661            0.1467471            0.1161975
## 7            0.1142661            0.1467471            0.1161975
## 8            0.1142661            0.1467471            0.1161975
## 9            0.1142661            0.1467471            0.1161975
##   temporal_features_60 temporal_features_61 temporal_features_62
## 4          -0.25334696           0.14287930           0.09709828
## 5          -0.34311079          -0.33425337          -0.23604894
## 6           0.03838514           0.03444023          -0.09723732
## 7          -0.05137869          -1.22345349          -0.40262421
## 8           0.48720294           0.27300594           0.48577116
## 9           0.12814896           0.20794326           0.31919756
##   temporal_features_63 temporal_features_64 temporal_features_65
## 4           0.10007495         0.0462137654           0.25910535
## 5           0.10007495         0.3206873731           0.03640143
## 6           0.10007495         0.0004688541           0.03640143
## 7           0.03407389        -0.2282584471           0.30364559
## 8           0.38058346         0.2978149174           0.14775338
## 9           0.36408320         0.3664322844           0.34818717
##   temporal_features_66 temporal_features_67 temporal_features_68
## 4           0.16166352          -0.56012671           0.25624695
## 5           0.04555131          -0.87591978           0.01974737
## 6          -0.16345096          -0.06011968          -0.33500137
## 7          -1.78902342          -0.48117766           0.01974737
## 8           0.39388797           0.36093987           0.13799774
## 9           0.13844136           0.15041008           0.21682976
##   temporal_features_69 temporal_features_70 temporal_features_71
## 4            0.2889967         -0.005718109            0.1795306
## 5           -0.3057002         -0.306028736           -0.1838918
## 6           -0.1505623         -0.259827527            0.1068470
## 7            0.2889967         -0.444635133            0.0341619
## 8            0.1597149          0.179089519            0.3248992
## 9            0.3924225          0.248392718            0.3006714
##   temporal_features_72 temporal_features_73 temporal_features_74
## 4           -2.6628942           -0.8696579          -0.09429838
## 5           -0.4864619           -0.6452586          -0.43160371
## 6           -0.4911906           -1.5353236          -0.29667300
## 7            0.7346741           -1.2760458           0.32079579
## 8           -0.7943025           -0.8005123          -0.31784849
## 9           -2.0581671           -0.8816528          -0.21205590
##   temporal_features_75 temporal_features_76 temporal_features_77
## 4           -0.1415646          0.064800016          -0.28002636
## 5           -0.5752710         -0.143824894          -0.64124175
## 6           -0.1054247         -0.313529095          -0.85044673
## 7           -1.0354951          1.108950062          -0.02110988
## 8           -0.2709821          0.003635324          -0.81783293
## 9           -0.1036956          0.727610011           0.45309323
##   temporal_features_78 temporal_features_79 temporal_features_80
## 4          0.001265656            0.1652097           0.46190937
## 5         -0.715026924           -2.3466998          -1.08819989
## 6         -0.642971353           -0.2085445          -1.06696023
## 7         -2.092634713            0.4782431          -0.04278948
## 8         -0.652675417           -0.8225335          -0.81998850
## 9          0.289456464            0.1805376           1.09106376
##   temporal_features_81 temporal_features_82 temporal_features_83
## 4            0.5908062          -0.18015340           -0.3598542
## 5           -0.2527817          -0.98108795           -0.4382347
## 6           -0.8890100          -0.78797023           -0.7103689
## 7            1.5149813          -0.15287340           -0.6939944
## 8           -0.5846511          -1.15265841           -0.2131097
## 9            1.6364999           0.08973636            0.8720666
##   temporal_features_84 temporal_features_85 temporal_features_86
## 4           0.43898120           -0.4363700           -0.1822363
## 5          -0.35334458           -0.3726418           -0.3560991
## 6          -0.33644639           -0.2903923           -0.1648307
## 7           0.35422262           -0.3553775            0.1280139
## 8          -0.37455104           -0.4027448           -0.3153413
## 9          -0.03122952           -0.3515510           -0.2972582
##   temporal_features_87 temporal_features_88 temporal_features_89
## 4           -0.2977471           -0.1615905          -0.38118360
## 5           -0.5222343           -0.2834922          -0.53053064
## 6           -0.2621746           -0.2979569          -0.59677874
## 7           -0.6988740            1.2503091           0.02519427
## 8           -0.3350657           -0.2120453          -0.63299209
## 9           -0.3077514            0.3716689           0.22633125
##   temporal_features_90 temporal_features_91 temporal_features_92
## 4         -0.138542085          -0.04287846           0.05919186
## 5         -0.486485589          -0.49091758          -0.55072030
## 6         -0.496864534          -0.39282857          -0.64622782
## 7         -0.551488419           0.15271098          -0.29186037
## 8         -0.473627273          -0.57612521          -0.59649122
## 9         -0.009712828          -0.11268980           0.73111694
##   temporal_features_93 temporal_features_94 temporal_features_95
## 4            0.1647077           -0.2022689           -0.2709822
## 5           -0.2807815           -0.5440338           -0.4084528
## 6           -0.5357907           -0.4647211           -0.5172183
## 7            0.9956643           -0.1908579           -0.5289120
## 8           -0.5010493           -0.5472401           -0.3773159
## 9            1.2418070           -0.1705350            0.6798799
##   temporal_features_96 temporal_features_97 temporal_features_98
## 4           0.35977866            1.1722578           0.33959361
## 5           0.52499587            1.2536623          -0.19692728
## 6          -0.02507327            0.4719127          -0.63572961
## 7           0.86209482            0.4761641           1.32726105
## 8          -0.01304075            0.7974464           0.04012304
## 9           0.80824928            1.1579960           0.46854516
##   temporal_features_99 temporal_features_100 temporal_features_101
## 4           1.08094681             0.7962399             0.3842356
## 5          -0.02653752             0.3682848             0.3513957
## 6          -0.13435654             0.8072416             0.1073380
## 7           1.37066495            -0.7979418             0.4370662
## 8           0.50901618            -0.4067289             1.1126856
## 9           0.02253245            -0.3698993            -0.7681432
##   temporal_features_102 temporal_features_103 temporal_features_104
## 4             0.5802670          0.2177974528            -0.6563484
## 5             0.4199116          0.2091595022            -0.9166131
## 6             0.8011872          0.0009256021             0.4419833
## 7             0.3531897         -1.1011640519            -0.2407204
## 8             0.1577322         -0.0193276745             0.5747907
## 9             0.1651919         -0.3781327409             0.1914853
##   temporal_features_105 temporal_features_106 temporal_features_107
## 4            -0.2506679             1.2413461            0.68205165
## 5            -0.9056602            -0.4097739            0.75533075
## 6            -0.1466718            -0.7083462           -0.18482904
## 7            -1.7551239             1.2128649           -0.03269114
## 8             1.4188836            -0.8615476           -0.38541609
## 9             0.2952956             0.2375374           -0.37421698
##   temporal_features_108 temporal_features_109 temporal_features_110
## 4            0.38931831             1.1103174             0.3093887
## 5            0.52447804             1.2807517            -0.2964239
## 6           -0.02999702             0.4962797            -0.7088314
## 7            0.77094971             0.4198638             1.3386205
## 8            0.01978426             0.7051974            -0.2858710
## 9            0.70392628             1.1018495             0.4765202
##   temporal_features_111 temporal_features_112 temporal_features_113
## 4            0.80725088             0.7830414             0.4834854
## 5            0.21744303             0.4289949             0.4076987
## 6           -0.14844138             0.8162824             0.2116708
## 7            1.39061841            -0.9028970             0.7906280
## 8            0.28506663            -0.4234809             0.8582557
## 9            0.05613066            -0.3026383            -0.6627792
##   temporal_features_114 temporal_features_115 temporal_features_116
## 4             0.6705663             0.2456791           -0.58607569
## 5             0.4031875             0.1482172           -0.90617151
## 6             0.7935505             0.1333512            0.48697438
## 7             0.4188826            -1.1448914           -0.32463982
## 8             0.2417356            -0.1266263            0.61238772
## 9             0.2212431            -0.2076166            0.07857879
##   temporal_features_117 temporal_features_118 temporal_features_119
## 4            -0.2986056             1.0508027           0.618361924
## 5            -0.8218909            -0.2912922           0.505951223
## 6            -0.3757386            -0.7369416          -0.274518271
## 7            -1.6599497             1.1891293           0.007134638
## 8             1.4601440            -0.9028917          -0.545093859
## 9             0.2844242             0.2612795          -0.448961982
##   temporal_features_120 temporal_features_121 temporal_features_122
## 4           -0.03610495            -0.3571392          -0.003795541
## 5           -0.58126267            -0.4921952          -0.399029308
## 6           -0.41953817            -0.3624613          -0.311241144
## 7           -0.59172173            -0.6421038          -0.874523285
## 8           -0.44208968             0.7129104           2.093031318
## 9           -0.63953730            -0.7035852          -0.627950428
##   temporal_features_123 temporal_features_124 temporal_features_125
## 4             0.4640769           -0.05344211             0.2474155
## 5            -0.1565919            0.08787867            -0.3315342
## 6             0.1718360            0.22351187             0.3088881
## 7            -0.6864986            0.03996760            -0.7703813
## 8             0.5875501            1.33751667             0.9794033
## 9            -0.7529840           -0.48919918            -0.6117094
##   temporal_features_126 temporal_features_127 temporal_features_128
## 4            0.06856966             0.7077756           0.004942277
## 5            0.16570755             0.5770993          -0.351493786
## 6            0.26387000             1.0559666          -0.014194717
## 7           -0.39525490            -0.5720723          -0.834218247
## 8            0.38904096             1.7189728           1.229735677
## 9           -0.31231176            -0.6456574          -0.685388149
##   temporal_features_129 temporal_features_130 temporal_features_131
## 4             0.1150388             0.6042926            -0.2681643
## 5             0.6225198             0.1785604             0.5885707
## 6             1.1052287             0.6137590            -0.1972694
## 7            -0.0758856            -0.6931162            -0.6909507
## 8             1.5737679             0.5535181             0.5807242
## 9            -0.7977362            -0.7351198            -0.5423913
##   temporal_features_132 temporal_features_133 temporal_features_134
## 4           -0.73069075            0.72272501             0.3813373
## 5           -0.73069075            1.15107196            -0.3161202
## 6           -0.73069075            0.28698882            -0.3088223
## 7           -0.73069075           -0.26638196             1.1229211
## 8            0.53998230           -0.08033646            -0.3229653
## 9           -0.04188874            1.34768875            -0.8022247
##   temporal_features_135 temporal_features_136 temporal_features_137
## 4             0.7901838             0.5904475            0.07295709
## 5             0.5307275            -0.2724542            0.40945255
## 6             0.6022448             0.2105956           -2.25876417
## 7             1.0247216             0.1349094            0.78159955
## 8             0.4459855            -1.4180069           -0.28118195
## 9            -0.5427343            -0.3377099            0.42142203
##   temporal_features_138 temporal_features_139 temporal_features_140
## 4            0.17526312           -0.38383294           -0.09370848
## 5            0.08298801           -0.03164328           -0.26195719
## 6            0.25624866           -0.32315601            0.51666427
## 7           -0.52609443            0.33273015            0.90472037
## 8            0.06240355           -0.64526667           -0.27062645
## 9            0.03137484           -0.42107664            0.70240350
##   temporal_features_141 temporal_features_142 temporal_features_143
## 4           -0.06837558            0.37063575            -0.2137103
## 5           -2.40549220            0.18891502             0.1084247
## 6           -1.03603797            0.65198927            -0.1784791
## 7            0.11226073           -0.61505736             0.4883162
## 8           -0.77916514           -0.04456775            -0.5347384
## 9           -0.16497171            0.19471869             0.7294001
##   temporal_features_144 temporal_features_145 temporal_features_146
## 4             0.4890421            0.59932245            1.06255904
## 5             0.3557876            0.20529847           -0.58910275
## 6            -0.2950779            0.52711346           -0.87750250
## 7             0.5279775           -0.08682346           -0.30243283
## 8            -0.3858577            1.02043823            1.82911266
## 9             0.6229209            0.02161943            0.08357081
##   temporal_features_147 temporal_features_148 temporal_features_149
## 4           -0.69461226             0.2307570            -0.6894868
## 5            1.61128135             0.3463870            -0.4651234
## 6            1.14536309             0.1061773             1.3770740
## 7            0.95257880             1.8572615            -0.5734111
## 8            0.02504808             0.5040981             1.0161756
## 9            0.16473449            -0.8251207             0.1257116
##   temporal_features_150 temporal_features_151 temporal_features_152
## 4           -0.02776816           0.007709011            -0.0325701
## 5            0.35483877           0.050165437            -0.9926628
## 6            0.01847641           0.766090047            -0.2650573
## 7            0.16587274          -0.648650342            -0.8534508
## 8            0.50002417           0.192568600             1.5241223
## 9            0.10400759          -0.931261749            -0.6207984
##   temporal_features_153 temporal_features_154 temporal_features_155
## 4            -0.7459086            0.37127581           -0.02544918
## 5            -0.9214621            0.02217363            1.46388160
## 6            -0.0983142           -0.02504430            0.53910480
## 7            -0.5383799            0.39253025           -1.07771919
## 8             0.5636711            0.63972273            0.59617896
## 9            -0.7890816           -0.66000329           -0.15123392
##   temporal_features_156 temporal_features_157 temporal_features_158
## 4             0.9439915           -0.08346134             0.5726422
## 5             0.8697400           -0.70718433            -0.2379578
## 6             0.5070675            0.18846260            -0.4775441
## 7             0.9656869            0.13352517            -1.0983599
## 8            -0.7112383            0.84246428             1.7296798
## 9             0.3855960           -0.99564041             0.6771595
##   temporal_features_159 temporal_features_160 temporal_features_161
## 4            -0.9647325           -0.24620395            -0.5565140
## 5             0.8697185            0.46457379            -0.6016401
## 6             0.4880065           -0.06931253             2.4384382
## 7             0.1026554            1.34223899            -0.9155474
## 8            -0.2398491            1.41143226             0.9292502
## 9             0.4344704           -0.39635549            -0.1715288
##   temporal_features_162 temporal_features_163 temporal_features_164
## 4           -0.14135854            0.22319446            0.04272243
## 5            0.17423474            0.05080562           -0.43835078
## 6           -0.16796109            0.68488479           -0.51062127
## 7            0.47840357           -0.61349049           -1.13498593
## 8            0.28385061            0.49272514            1.12446122
## 9            0.04611621           -0.36996648           -0.85531662
##   temporal_features_165 temporal_features_166 temporal_features_167
## 4            -0.4855421           -0.05735693             0.1182108
## 5             0.7557823           -0.11961756             0.8951111
## 6             0.5358400           -0.46777684             0.4675729
## 7            -0.4448437            0.64085419            -1.0177780
## 8             0.8521677            0.37713483             0.7301259
## 9            -0.4595393           -0.49271383            -0.5601788
##   temporal_features_168 temporal_features_169 temporal_features_170
## 4            -0.2463541           -0.32156223             0.8281412
## 5             0.3149920           -0.48657606             0.3589921
## 6            -0.2170018           -0.33102038             0.3685345
## 7            -1.0269527           -0.29563007            -0.4588104
## 8             0.4023372           -0.04471468             1.0087938
## 9            -0.1045318            0.03142344            -0.7762938
##   temporal_features_171 temporal_features_172 temporal_features_173
## 4           -0.15418028            -0.2839568            -0.6409316
## 5            0.12394304            -0.6040406            -0.2867425
## 6            0.10434041            -0.6034042            -0.6326790
## 7            0.92900521             2.7402573            -0.6561133
## 8            0.09720291            -0.1274969            -0.1732817
## 9           -0.03969763            -0.9955122             1.0810388
##   temporal_features_174 temporal_features_175 temporal_features_176
## 4           -0.55277495           -0.27146480            -0.1145655
## 5           -0.06942847            0.05222576             0.0244779
## 6           -0.34243279           -0.45471502            -0.1152000
## 7           -1.03932055           -0.19414569             0.4550810
## 8           -0.20970338           -0.16928151             0.1692320
## 9           -0.35670212           -1.89917494             1.0117155
##   temporal_features_177 temporal_features_178 temporal_features_179
## 4            -0.2634591             0.3509373            -0.1304941
## 5            -0.6866641             0.1589896             1.3711401
## 6            -0.1827684             0.5087030             0.3907658
## 7            -0.3182360            -0.4981810            -0.4001559
## 8            -0.2930034             0.2326198             0.8165223
## 9            -0.6971001            -1.3418698             0.8043567
##   temporal_features_180 temporal_features_181 temporal_features_182
## 4           -0.06028758           -0.28825531           -0.04069129
## 5           -0.24893167           -0.48398710           -0.36385185
## 6           -0.06849448           -0.22583083           -0.60525508
## 7            0.61527614           -0.02663709           -0.19296482
## 8           -0.45626854           -0.50641478           -0.58598158
## 9           -0.14087294           -0.37037699            0.53686895
##   temporal_features_183 temporal_features_184 temporal_features_185
## 4           -0.60454019           -0.47535728            -0.5206951
## 5           -0.04086809            0.03111695            -0.4337451
## 6           -0.35752087           -0.66715100            -0.2145378
## 7            0.48585653            3.82062573            -0.4208837
## 8           -0.52566031           -0.60575124            -0.3895567
## 9            0.26886590           -0.32698243             0.3815371
##   temporal_features_186 temporal_features_187 temporal_features_188
## 4            -0.4723963            -0.5827563            -0.6010214
## 5            -0.4614387            -0.5449211            -0.6210230
## 6            -0.5523504            -0.6479561            -0.7441127
## 7             0.4604009            -0.3942817            -0.3024363
## 8            -0.5698381            -0.7104496            -0.5192810
## 9            -0.4143233             0.2255455            -0.3704264
##   temporal_features_189 temporal_features_190 temporal_features_191
## 4           -0.59431865            -0.4691492            0.09084679
## 5           -0.47305113            -0.4894668           -0.03814021
## 6           -0.62821953            -0.5266016            0.19668227
## 7           -0.49353236             0.7681803           -0.39587472
## 8           -0.59143697            -0.4407166           -0.17918526
## 9            0.08658673             0.4634203           -0.39916050
##   temporal_features_192 temporal_features_193 temporal_features_194
## 4             0.5525125             0.5543345             0.2050303
## 5             0.5500967             0.5319090            -0.4225631
## 6             0.1008896             0.1332248            -0.1182202
## 7             0.8930979             0.8224755            -0.6203189
## 8             0.1483964             0.1263931            -0.6304617
## 9             0.7458891             0.6605958            -0.8745393
##   temporal_features_195 temporal_features_196 temporal_features_197
## 4            -0.8423218             0.6459058             1.0740227
## 5            -0.8423218             0.2131183             0.9052599
## 6            -0.8423218            -0.1270957             0.7725959
## 7            -0.8423218             0.3908037             0.9745472
## 8             1.0012824            -0.1511135            -1.0362365
## 9            -0.1445655             0.6424081             0.3916069
##   temporal_features_198 temporal_features_199 temporal_features_200
## 4           -0.04843733           -0.14474253            -0.3449314
## 5            0.33878579           -0.27251944            -0.2149180
## 6           -0.01028293           -0.21295985            -0.2028951
## 7           -1.34182460            0.81667294            -0.3320061
## 8            0.39621938           -0.42145944            -0.1913867
## 9           -0.02339831            0.08848781            -0.2993320
##   temporal_features_201 temporal_features_202 temporal_features_203
## 4          -0.471958861           -0.09472464            -1.4761224
## 5          -0.152652657           -0.09384910            -1.4761224
## 6          -0.137329563           -0.09303741            -1.4761224
## 7          -0.358162260           -0.09129330            -1.4761224
## 8          -0.008435207           -0.09344440             0.9742709
## 9          -0.310390395           -0.09235209            -0.2679581
##   temporal_features_204 temporal_features_205 temporal_features_206
## 4            -0.4503543            -0.4476321            -0.8747477
## 5            -0.3935243            -0.3907930            -0.7231862
## 6            -0.4126668            -0.4099386            -0.8238355
## 7            -0.1544083            -0.1516385             1.1546762
## 8            -0.3588932            -0.3607955            -0.6112399
## 9            -0.2955677            -0.2951080            -0.2002845
##   temporal_features_207 temporal_features_208 temporal_features_209
## 4            -0.4213261             0.1736195            0.19078416
## 5            -0.3818996             0.3880805            0.24602424
## 6            -0.4068985            -0.1837235           -0.31371684
## 7             0.5155844             0.8773941            0.73932792
## 8            -0.3530866            -0.1591351           -0.07508961
## 9            -0.2280742             0.9148253            0.81397657
##   temporal_features_210 temporal_features_211 temporal_features_212
## 4           -0.14771927            -0.2177152             0.2828163
## 5           -0.83048714            -0.2177152             0.2852048
## 6           -0.61871724            -0.2177152            -0.2926030
## 7           -0.73448188            -0.2177152             0.4153758
## 8           -0.04928994            -0.2177152            -0.4012779
## 9           -0.54095906            -0.2177152             0.5001660
##   temporal_features_213 temporal_features_214 temporal_features_215
## 4             0.3553598            0.03454314           -0.21485796
## 5             0.3575294            0.25929566           -0.11145223
## 6            -0.1672697           -0.12775894            0.01945671
## 7             0.4757582           -0.88135180            0.51480023
## 8            -0.2659741            0.33036345           -0.43566784
## 9             0.5527701           -0.56101842            0.06335062
##   temporal_features_216 temporal_features_217 temporal_features_218
## 4            -0.5935005           -0.83598833           -0.10914002
## 5            -0.4549874           -0.54683980           -0.08143559
## 6            -0.4639460           -0.37231900           -0.09235326
## 7            -0.3192336           -0.07053158           -0.05865267
## 8            -0.5846825           -0.76717048           -0.04651136
## 9            -0.3876901           -0.01244376           -0.11027716
##   temporal_features_219 temporal_features_220 temporal_features_221
## 4            -0.4801640            -0.1473874            -0.1465424
## 5            -0.4751876             0.2971926             0.2981696
## 6            -0.8722985             0.2683129             0.2700183
## 7             1.1859095             0.7279925             0.7260212
## 8            -0.4483154             1.2552217             1.2564533
## 9            -0.4841453            -0.3765822            -0.3758027
##   temporal_features_222 temporal_features_223
## 4             1.1883420             0.8275405
## 5             1.8093965             1.1635787
## 6             1.6873453             1.3307878
## 7             2.6684968             2.0100803
## 8             3.6189182             3.4461576
## 9            -0.5543839            -0.3796163

Analysis of the Data

Before we start withe dimension reduction methods, we need to load the required packages and libraries required to do so:

install.packages("ade4", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'ade4' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'ade4'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying C:
## \Users\PC-CATHERINE\Documents\R\win-library\3.6\00LOCK\ade4\libs\x64\ade4.dll
## to C:\Users\PC-CATHERINE\Documents\R\win-library\3.6\ade4\libs\x64\ade4.dll:
## Permission denied
## Warning: restored 'ade4'
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("FactoMineR", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'FactoMineR' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("smacof", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## 
##   There is a binary version available but the source version is later:
##        binary source needs_compilation
## smacof  2.0-0  2.1-0              TRUE
## 
##   Binaries will be installed
## package 'smacof' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'smacof'
## Warning in file.copy(savedcopy, lib, recursive = TRUE):
## problem copying C:\Users\PC-CATHERINE\Documents\R\win-
## library\3.6\00LOCK\smacof\libs\x64\smacof.dll to C:\Users\PC-
## CATHERINE\Documents\R\win-library\3.6\smacof\libs\x64\smacof.dll: Permission
## denied
## Warning: restored 'smacof'
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("labdsv", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'labdsv' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'labdsv'
## Warning in file.copy(savedcopy, lib, recursive = TRUE):
## problem copying C:\Users\PC-CATHERINE\Documents\R\win-
## library\3.6\00LOCK\labdsv\libs\x64\labdsv.dll to C:\Users\PC-
## CATHERINE\Documents\R\win-library\3.6\labdsv\libs\x64\labdsv.dll: Permission
## denied
## Warning: restored 'labdsv'
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("missMDA", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'missMDA' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("devtools", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'devtools' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("knitr", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'knitr' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("rgl", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'rgl' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'rgl'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying C:
## \Users\PC-CATHERINE\Documents\R\win-library\3.6\00LOCK\rgl\libs\x64\rgl.dll
## to C:\Users\PC-CATHERINE\Documents\R\win-library\3.6\rgl\libs\x64\rgl.dll:
## Permission denied
## Warning: restored 'rgl'
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("htmlTable", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'htmlTable' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("ClusterR", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'ClusterR' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'ClusterR'
## Warning in file.copy(savedcopy, lib, recursive = TRUE):
## problem copying C:\Users\PC-CATHERINE\Documents\R\win-
## library\3.6\00LOCK\ClusterR\libs\x64\ClusterR.dll to C:\Users\PC-
## CATHERINE\Documents\R\win-library\3.6\ClusterR\libs\x64\ClusterR.dll: Permission
## denied
## Warning: restored 'ClusterR'
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
#install.packages("ggbiplot", repos = "http://cran.us.r-project.org")
install.packages("factoextra", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'factoextra' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("psych", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'psych' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("maptools", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'maptools' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'maptools'
## Warning in file.copy(savedcopy, lib, recursive = TRUE):
## problem copying C:\Users\PC-CATHERINE\Documents\R\win-
## library\3.6\00LOCK\maptools\libs\x64\maptools.dll to C:\Users\PC-
## CATHERINE\Documents\R\win-library\3.6\maptools\libs\x64\maptools.dll: Permission
## denied
## Warning: restored 'maptools'
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
install.packages("Rtsne", repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/PC-CATHERINE/Documents/R/win-library/3.6'
## (as 'lib' is unspecified)
## package 'Rtsne' successfully unpacked and MD5 sums checked
## Warning: cannot remove prior installation of package 'Rtsne'
## Warning in file.copy(savedcopy, lib, recursive = TRUE): problem copying C:
## \Users\PC-CATHERINE\Documents\R\win-library\3.6\00LOCK\Rtsne\libs\x64\Rtsne.dll
## to C:\Users\PC-CATHERINE\Documents\R\win-library\3.6\Rtsne\libs\x64\Rtsne.dll:
## Permission denied
## Warning: restored 'Rtsne'
## 
## The downloaded binary packages are in
##  C:\Users\PC-CATHERINE\AppData\Local\Temp\RtmpUzXceH\downloaded_packages
library(rgl)
## Warning: package 'rgl' was built under R version 3.6.3
library(htmlTable)
## Warning: package 'htmlTable' was built under R version 3.6.3
library(knitr)
## Warning: package 'knitr' was built under R version 3.6.3
library(devtools)
## Warning: package 'devtools' was built under R version 3.6.3
## Loading required package: usethis
## Warning: package 'usethis' was built under R version 3.6.2
install_github("vqv/ggbiplot")
## WARNING: Rtools is required to build R packages, but is not currently installed.
## 
## Please download and install Rtools custom from http://cran.r-project.org/bin/windows/Rtools/.
## Skipping install of 'ggbiplot' from a github remote, the SHA1 (7325e880) has not changed since last install.
##   Use `force = TRUE` to force installation
library(ggbiplot)
## Loading required package: ggplot2
## Loading required package: plyr
## Loading required package: scales
## Loading required package: grid
library(missMDA)
## Warning: package 'missMDA' was built under R version 3.6.3
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 3.6.3
library(ade4)
## Warning: package 'ade4' was built under R version 3.6.3
## 
## Attaching package: 'ade4'
## The following object is masked from 'package:FactoMineR':
## 
##     reconst
library(labdsv)
## Warning: package 'labdsv' was built under R version 3.6.3
## Loading required package: mgcv
## Loading required package: nlme
## This is mgcv 1.8-28. For overview type 'help("mgcv-package")'.
## Registered S3 method overwritten by 'labdsv':
##   method       from
##   summary.dist ade4
## This is labdsv 2.0-1
## convert existing ordinations with as.dsvord()
## 
## Attaching package: 'labdsv'
## The following object is masked from 'package:stats':
## 
##     density
library(smacof)
## Warning: package 'smacof' was built under R version 3.6.3
## Loading required package: plotrix
## 
## Attaching package: 'plotrix'
## The following object is masked from 'package:scales':
## 
##     rescale
## The following object is masked from 'package:rgl':
## 
##     mtext3d
## Registered S3 methods overwritten by 'car':
##   method                          from
##   influence.merMod                lme4
##   cooks.distance.influence.merMod lme4
##   dfbeta.influence.merMod         lme4
##   dfbetas.influence.merMod        lme4
## 
## Attaching package: 'smacof'
## The following object is masked from 'package:base':
## 
##     transform
library(ggplot2)
library(ClusterR)
## Warning: package 'ClusterR' was built under R version 3.6.3
## Loading required package: gtools
## 
## Attaching package: 'gtools'
## The following object is masked from 'package:mgcv':
## 
##     scat
library(psych)
## Warning: package 'psych' was built under R version 3.6.3
## 
## Attaching package: 'psych'
## The following object is masked from 'package:gtools':
## 
##     logit
## The following object is masked from 'package:smacof':
## 
##     Procrustes
## The following object is masked from 'package:plotrix':
## 
##     rescale
## The following object is masked from 'package:labdsv':
## 
##     pca
## The following objects are masked from 'package:scales':
## 
##     alpha, rescale
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
library(Rtsne)
## Warning: package 'Rtsne' was built under R version 3.6.2
library(factoextra)
## Warning: package 'factoextra' was built under R version 3.6.3
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(maptools)
## Loading required package: sp
## Checking rgeos availability: FALSE
##      Note: when rgeos is not available, polygon geometry     computations in maptools depend on gpclib,
##      which has a restricted licence. It is disabled by default;
##      to enable gpclib, type gpclibPermit()

Now that we have the required packages lets move on to the different methods of input dimension reduction techniques.

MDS

Multidimensional Scaling is a method of dimension reduction which maps the relative position of the datapoints with a given dissimilarity matrix.

d<-dist(echonest[,2:19])
mds1<-mds(d, ndim=2)
mds1
## 
## Call:
## mds(delta = d, ndim = 2)
## 
## Model: Symmetric SMACOF 
## Number of objects: 2000 
## Stress-1 value: 0.259 
## Number of iterations: 106
plot(mds1)

From the plot we can see that there are some outliers, but most of the data seems to be concentrated in one place. The Stress-1 coefficient using ordinal MDS, Kruskal (1964a), on the basis of his “experience with experimental and synthetic data” (p. 16), suggests the following benchmarks: .20 = poor, .10 = fair, .05 = good, .025 = excellent, and .00 = perfect. Hence, the goodness of fit measure indicates that mds fitting is poor in this case. To get how “close” (or similar) are the different variables, we can perform mds on the transposed table:

d1<-dist(t(echonest[,2:19]))
mds2<-mds(d1, ndim=2)
mds2
## 
## Call:
## mds(delta = d1, ndim = 2)
## 
## Model: Symmetric SMACOF 
## Number of objects: 18 
## Stress-1 value: 0.253 
## Number of iterations: 115
plot(mds2)

How good is the fit? Not very good , as is eveident from the Stress-1 value.

PCA

In case of PCA, the pincipal components are determined such that maximum variability of the data is covered. In R we have the prcomp and princomp functions for determining the principal components. But these functions aren’t that efficient when we have missing values as they just have a provision of omitting missing values. So lets check if our data has missing values:

sum(is.na(echonest))
## [1] 8473

But, we can imput the missing values and perform pca using prcomp in the following way:

echonest_imputed<- imputePCA(echonest[,2:19])
pca_impute<-prcomp(echonest_imputed$completeObs)
summary(pca_impute)
## Importance of components:
##                           PC1    PC2    PC3     PC4     PC5     PC6    PC7
## Standard deviation     2.0194 1.3685 1.2295 1.19362 1.07667 1.00114 0.9389
## Proportion of Variance 0.2812 0.1292 0.1043 0.09825 0.07995 0.06912 0.0608
## Cumulative Proportion  0.2812 0.4104 0.5147 0.61291 0.69286 0.76198 0.8228
##                            PC8    PC9   PC10    PC11    PC12    PC13    PC14
## Standard deviation     0.85851 0.7413 0.6198 0.56142 0.45461 0.43035 0.28921
## Proportion of Variance 0.05083 0.0379 0.0265 0.02174 0.01425 0.01277 0.00577
## Cumulative Proportion  0.87361 0.9115 0.9380 0.95974 0.97399 0.98677 0.99253
##                           PC15    PC16    PC17    PC18
## Standard deviation     0.21491 0.20619 0.13292 0.04343
## Proportion of Variance 0.00319 0.00293 0.00122 0.00013
## Cumulative Proportion  0.99572 0.99865 0.99987 1.00000

We can see that we need atleast 9 principal components to cover atleast 90% of the variation in the data. But for now, we are going to take the cutoff point for the varition as 75% and thus will use 6 principal components.

pca_plot<-data.frame(pca_x=pca_impute$x[,1],pca_y=pca_impute$x[,2],label=echonest_1$metadata_artist_name[1:2000], label2=echonest_1$metadata_artist_location[1:2000])

ggplot(pca_plot, aes(x = pca_x, y = pca_y, color = label)) + 
  ggtitle("PCA of Echonest sample") + 
  geom_text(aes(label = label)) + 
  theme(legend.position = "none")

ggplot(pca_plot, aes(x = pca_x, y = pca_y, color = label2)) + 
  ggtitle("PCA of Echonest sample") + 
  geom_text(aes(label = label2)) + 
  theme(legend.position = "none")

fviz_pca_var(pca_impute, repel=TRUE)

fviz_eig(pca_impute)

As we can see from the output, the first two principal values cover very less variation in the data. Futheremore, from the variable plot we can deduce that the energy and dancebility of a song are completely in the opposite directions, implying that they are almost perfectly negatively correlated (weird, right?). Similarily, we see that all the rank varibles are all the hotness rank features of a song are negatively correlated with the social features of the artists. Audio spechiness is positively correlated with the dancebility. How good is the quality of this dimension reduction?

pca1<-principal(echonest[,2:19], nfactors=6, rotate="varimax")
## Warning in cor.smooth(r): Matrix was not positive definite, smoothing was done
pca1$uniquenesses
##        audio_features_acousticness        audio_features_danceability 
##                         0.27088953                         0.21398707 
##              audio_features_energy    audio_features_instrumentalness 
##                         0.31889873                         0.42563490 
##            audio_features_liveness         audio_features_speechiness 
##                         0.39166434                         0.32554162 
##               audio_features_tempo             audio_features_valence 
##                         0.51292417                         0.14591210 
##        ranks_artist_discovery_rank      ranks_artist_familiarity_rank 
##                         0.09437458                         0.22878742 
##       ranks_artist_hotttnesss_rank           ranks_song_currency_rank 
##                         0.11352551                         0.15393671 
##         ranks_song_hotttnesss_rank   social_features_artist_discovery 
##                         0.23772804                         0.02860332 
## social_features_artist_familiarity  social_features_artist_hotttnesss 
##                         0.20038473                         0.12905907 
##      social_features_song_currency    social_features_song_hotttnesss 
##                         0.41360144                         0.10472673
pca1$complexity
##        audio_features_acousticness        audio_features_danceability 
##                           1.109748                           1.530017 
##              audio_features_energy    audio_features_instrumentalness 
##                           1.775989                           1.141084 
##            audio_features_liveness         audio_features_speechiness 
##                           1.230047                           1.069704 
##               audio_features_tempo             audio_features_valence 
##                           1.745055                           1.187461 
##        ranks_artist_discovery_rank      ranks_artist_familiarity_rank 
##                           1.040580                           1.140429 
##       ranks_artist_hotttnesss_rank           ranks_song_currency_rank 
##                           1.028283                           1.090428 
##         ranks_song_hotttnesss_rank   social_features_artist_discovery 
##                           1.435711                           1.056574 
## social_features_artist_familiarity  social_features_artist_hotttnesss 
##                           1.468129                           1.288929 
##      social_features_song_currency    social_features_song_hotttnesss 
##                           1.037590                           1.240461

As we can see from the results, both the complexity and uniqueness are higher than is desired.

t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a method of dimensionaluty reduction which computes the difference between the probability of similar points in the original space and in lower dimension via K-L divergence metric. It differes from Pca mainly by the fact that it keeps the low dimensional similar points together, whereas PCA keeps the away to maximise variance covered in the data. It basically performs PCA to get a lower dimension data, then it derives a probability distribution on the original high-dimensional data, such that the points which are similar to each other have a higher probability of getting picked. Then using these two, it defines a probability distribution of similarity between the low dimension points of PCA and the high dimensional data points. Lastly, it minimises the dissimilarity or K-L divergence between these two probability distributions.

tsne<-Rtsne(echonest_imputed$completeObs)
plot(tsne$itercosts)# We need to set the max_iter to that value after which thereis a big fall in the cost

tsne<-Rtsne(echonest_imputed$completeObs, max_iter = 250, perplexity = 300)
tsne_plot <- data.frame(tsne_x = tsne$Y[,1], tsne_y = tsne$Y[,2], label = as.factor(echonest_1$metadata_artist_location[1:2000]))
ggplot(tsne_plot, aes(x = tsne_x, y = tsne_y, color = label)) + 
    ggtitle("t-SNE for Location") + geom_text(aes(label = label)) + 
    theme(legend.position="none")

tsne_plot1 <- data.frame(tsne_x = tsne$Y[,1], tsne_y = tsne$Y[,2], label = as.factor(echonest_1$metadata_artist_name[1:2000]))
ggplot(tsne_plot1, aes(x = tsne_x, y = tsne_y, color = label)) + 
    ggtitle("t-SNE for Artists") + geom_text(aes(label = label)) + 
    theme(legend.position="none")

The output is a little more comprehendable and distinguishable as compared to pca and mds, but, it doesn’t give us any information amoung the correlations of different variables.

Results

The correct input reduction method depends on the type of data one has and what we intend to derve from it. That being said, since t-SNE is a metric method, its is more accurate and easy to interpret as compared to PCA and MDS. Furthermore, it can also be used for classification between the different groups by calculating the centroids of the embedded data obtained and then classifying the points into groups based on the their distance from these centroids. But, sometimes PCA or MDS might be better than t-SNE especially if the number of dimensions is not as large and the when one is interested in the relation amoungst these variables. In such a case, t-SNE will overcomplicate the matters as you will have to find the optimum number of iteration and then also perplexity via trial and error when a vey good reslt could be oobtained by employing PCA or MDS. Thus, the optimum method for dimensionality reduction depends on the purpose of the analysis and the structure of the dataset.