filter Select stock returns of January 31, 2020.filter Create the same line plot as in Q7, but without Amazon.# Load packages
library(tidyquant)
library(tidyverse)
# Import stock prices
stock_prices <- tq_get(c("WMT", "TGT", "AMZN"), get = "stock.prices", from = "2020-01-01")
# Calculate daily returns
stock_returns <-
stock_prices %>%
group_by(symbol) %>%
tq_mutate(select = adjusted, mutate_fun = periodReturn, period = "daily")
stock_returns
## # A tibble: 255 x 9
## # Groups: symbol [3]
## symbol date open high low close volume adjusted daily.returns
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 WMT 2020-01-02 119. 120. 119. 119. 6764900 118. 0
## 2 WMT 2020-01-03 118. 119. 118. 118. 5399200 117. -0.00883
## 3 WMT 2020-01-06 117. 118. 117. 118. 6445500 117. -0.00204
## 4 WMT 2020-01-07 117. 118. 116. 117. 6846900 116. -0.00926
## 5 WMT 2020-01-08 116. 117. 116. 116. 5875800 116. -0.00343
## 6 WMT 2020-01-09 116. 117. 116. 117. 5563700 117. 0.0103
## 7 WMT 2020-01-10 117. 117. 116. 116. 6054800 116. -0.00835
## 8 WMT 2020-01-13 116. 117. 115. 116. 6112600 115. -0.00430
## 9 WMT 2020-01-14 115. 116. 115. 116. 6585800 116. 0.00259
## 10 WMT 2020-01-15 115. 116. 115. 115. 7454200 115. -0.00775
## # … with 245 more rows
filter Select stock returns of January 31, 2020.Hint: See the code in 1.2.2 Selecting observations.
filter (stock_returns, date == "2020-01-31")
## # A tibble: 3 x 9
## # Groups: symbol [3]
## symbol date open high low close volume adjusted daily.returns
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 WMT 2020-01-31 116. 116. 114. 114. 7775800 114. -0.0179
## 2 TGT 2020-01-31 113. 114. 110. 111. 6961900 110. -0.0343
## 3 AMZN 2020-01-31 2051. 2056. 2002. 2009. 15567300 2009. 0.0738
Hint: Answer the question by comparing daily returns of each stock on January 31, 2020.
AMZN did the best because they had opened and closed with a number above 2000 and they didn’t have a negitive daily returns.
Hint: See the code in 4.3.3 Box plots. Add an appropriate title and labels for both axes.
ggplot(stock_returns,
aes(x = symbol,
y = daily.returns)) +
geom_boxplot() +
labs(title = "Daily distributions by stock")
Hint: Answer the question by comparing median and outliers of each stock.
Wakmart had the best preformance this year so far based on the stock plot above.Their plot shows the median is closeer to 0 regardless of what the mean might be.
Hint: See the code in 4.3.1 Bar chart (on summary statistics).
plotdata <- stock_returns %>%
group_by(symbol) %>%
summarize(mean_return = mean(daily.returns))
plotdata
## # A tibble: 3 x 2
## symbol mean_return
## <chr> <dbl>
## 1 AMZN 0.00277
## 2 TGT -0.000792
## 3 WMT 0.000920
Hint: See the code in 4.3.1 Bar chart (on summary statistics). Add an appropriate title and labels for both axes.
ggplot(plotdata,
aes(x = symbol,
y = mean_return)) + geom_bar(stat = "identity")
labs(x = "symbols", y = "mean_returns", title = "Daily Returns")
## $x
## [1] "symbols"
##
## $y
## [1] "mean_returns"
##
## $title
## [1] "Daily Returns"
##
## attr(,"class")
## [1] "labels"
Hint: Google search something like “ggplot2 multiple lines”.
ggplot(stock_prices,
aes(x = date,
y = close,
color = symbol)) +
geom_line()
filter Create the same line plot as in Q7, but without Amazon.Note: Insert a new code chunk below, copy and paste the code in Q7, and revise it using the dplyr::filter function. This is an extra credit question worth 10 points. However, the total number of points you could earn for this quiz is capped at 100 points. In other words, the extra credit can only offset any one question you missed in the first seven questions.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.